Advertisement

Hydrogen Production Through Solar-Driven Water Splitting: Cu(I) Oxide-Based Semiconductor Nanoparticles as the Next-Generation Photocatalysts

  • Sanjib Shyamal
  • Ashis Kumar Satpati
  • Arjun MaityEmail author
  • Chinmoy Bhattacharya
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

Production of clean fuels like H2 using renewable sources such as sunlight, through photoelectrochemical (PEC) system, is one of the promising approaches. For large-scale applications of the PEC devices, the photocatalyst used should be of low cost, quite stable, and with high conversion efficiency for H2 production. This chapter describes the application of Cu(I)-based binary and ternary oxide photocatalysts toward solar H2 generation. Due to many advantages of Cu(I)-based oxides, including low bandgap energy, suitable band positions, high charge carrier mobility, and most importantly low cost and nontoxic nature, it has received significant attention in PEC water splitting reaction. Different synthetic routes, electrodeposition, atomic layer deposition, anodization, chemical vapor deposition, e-beam evaporation, pulsed laser deposition, sputtering, successive ionic layer adsorption and reaction, sol-gel, spray pyrolysis, thermal oxidation, etc., have been explored to obtain efficient Cu2O thin films. Employing suitable substrate offering better electrical connectivity facilitates the hole transport mechanism leading to improvement of water reduction process. Various co-catalysts have been identified, and application of different other compounds like metal oxides, carbon-based derivatives, etc. influences the separation of the photogenerated charge carriers, thereby enhancing the overall performance and stability of the materials.

Keywords

Photoelectrochemical hydrogen production Cu(I) oxide photocatalyst Hole transport mechanism Separation of photogenerated charge carriers Composite layers Suitable co-catalyst Simple and complex oxides 

References

  1. Aharonshalom E, Heller A (1982) Efficient p - InP ( Rh -  H alloy ) and p - InP ( Re -  H alloy ) hydrogen evolving photocathodes. J Electrochem Soc 129(12):2865–2866.  https://doi.org/10.1149/1.2123695 CrossRefGoogle Scholar
  2. Ahmed J, Mao Y (2015) Delafossite CuAlO2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions. Nanomater Sustain Energy 1213(c4):57–72.  https://doi.org/10.1021/bk-2015-1213.ch004 CrossRefGoogle Scholar
  3. Ahn JS, Pode R, Lee KB (2017) Stoichiometric p-type Cu2O thin films prepared by reactive sputtering with facing target. Thin Solid Films 623:121–126.  https://doi.org/10.1016/j.tsf.2017.01.008 CrossRefGoogle Scholar
  4. Armaroli N, Balzani V (2011) Energy for the sustainable world. From the oil age to a sun powered future. Weinheim, Wiely-VChGoogle Scholar
  5. Azevedo J, Tilley SD, Schreier M, Stefik M, Sousa C, Araújo JP, Mendes A, Grätzel M, Mayer MT (2016) Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 24(10):10–16.  https://doi.org/10.1016/j.nanoen.2016.03.022 CrossRefGoogle Scholar
  6. Badkoobehhezaveh AM, Abdizadeh H, Golobostanfard MR (2018) Electrophoretic behavior of solvothermal synthesized anion replaced Cu2ZnSn(SxSe1−x)4 films for photoelectrochemical water splitting. Int J Hydrogen Ener 43:11990–12001.  https://doi.org/10.1016/j.ijhydene.2018.04.140 CrossRefGoogle Scholar
  7. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28(3):141–145. doi:0001-4842/95/0128-0141$09.00/0CrossRefGoogle Scholar
  8. Bicer Y, Chehade G, Dincer I (2017) Experimental investigation of various copper oxide electrodeposition conditions on photoelectrochemical hydrogen production. Int J Hydrog Energy 42(10):6490–6501.  https://doi.org/10.1016/j.ijhydene.2016.12.067 CrossRefGoogle Scholar
  9. Borkar R, Dahake R, Rayalu S, Bansiwal A (2018) Copper oxide nanograss for efficient and stable photoelectrochemical hydrogen production by water splitting. J Electron Mater 47(3):1824–1831.  https://doi.org/10.1007/s11664-017-5966-y CrossRefGoogle Scholar
  10. Chen S, Wang L (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24(18):3659–3666.  https://doi.org/10.1021/cm302533s CrossRefGoogle Scholar
  11. Chen YC, Chang YC, Hsu YK (2017) Facile synthesis of ZnO nanoparticles on carol-like Cu2O nanowires for photoelectrochemical hydrogen generation. J Alloys Comp 729:507–512.  https://doi.org/10.1016/j.jallcom.2017.09.174 CrossRefGoogle Scholar
  12. Cherfouh H, Fellahi O, Hadjersi T, Marsan B (2018) CuInS2/SiNWs/Si composite material for application as potential photoelectrode for photoelectrochemical hydrogen generation. Int J Hydrogen Ener 43:3431–3440.  https://doi.org/10.1016/j.ijhydene.2017.09.082 CrossRefGoogle Scholar
  13. Choi J, King N, Maggard PA (2013) Metastable Cu(I)-niobate semiconductor with a low-temperature, nanoparticle-mediated synthesis. ACS Nano 7(2):1699–1708.  https://doi.org/10.1021/nn305707f CrossRefGoogle Scholar
  14. Choi SY, Kim CD, Hand DS, Park H (2017) Facilitating hole transfer on electrochemically synthesized p-type CuAlO2 films for efficient solar hydrogen production from water. J Mater Chem A 5(21):10165–10172.  https://doi.org/10.1039/c7ta01919j CrossRefGoogle Scholar
  15. de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: electrodeposition and characterization. Chem Mater 11(12):3512–3517.  https://doi.org/10.1021/cm991054e CrossRefGoogle Scholar
  16. de Jongh PE, Vanmaekelbergh D, Kelly JJ (2000) Photoelectrochemistry of electrodeposited Cu2 O. J Electrochem Soc 147:486–489.  https://doi.org/10.1149/1.1393221 CrossRefGoogle Scholar
  17. Dominey RN, Lewis NS, Bruce JA, Bookbinder DC, Wrighton MS (1982) Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J Am Chem Soc 104(2):467–482. doi:0002-7863/82/1504-0467$01.25/0CrossRefGoogle Scholar
  18. Dubale AA, Tamirat AG, Chen HM, Berhe TA, Pan CJ, Su WN, Hwang BJ (2016) A highly stable CuS and CuS--Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J Mater Chem A 4:2205–2216.  https://doi.org/10.1039/C5TA09464J CrossRefGoogle Scholar
  19. Eisermann S, Kronenberger A, Laufer A, Bieber J, Haas G, Lautenschläger S, Homm G, Klar PJ, Meyer BK (2012) Copper oxide thin films by chemical vapor deposition: synthesis, characterization and electrical properties. Phys Status Solidi A 209(3):531–536.  https://doi.org/10.1002/pssa.201127493 CrossRefGoogle Scholar
  20. Fernandez AM, Dheree N, Turner JA, Martinez AM, Arriaga LG, Cano U (2005) Photoelectrochemical characterization of the Cu(In,Ga)S2 thin film prepared by evaporation. Sol Energy Mater Sol Cells 85(2):251–259.  https://doi.org/10.1016/j.solmat.2004.03.006 CrossRefGoogle Scholar
  21. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  22. Fuoco L, Joshi UA, Maggard PA (2012) Preparation and photoelectrochemical properties of p-type Cu5Ta11O30 and Cu3Ta7O19 semiconducting polycrystalline films. J Phys Chem C 116(14):10490–10497.  https://doi.org/10.1021/jp300267v CrossRefGoogle Scholar
  23. Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) P-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833.  https://doi.org/10.1021/ja408876k CrossRefGoogle Scholar
  24. Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132(49):17384–17386.  https://doi.org/10.1021/ja108427b CrossRefGoogle Scholar
  25. Hagedron K, Collin S, Maldonado S (2010) Preparation and photoelectrochemical activity of macroporous p-GaP(100). J Electrochem Soc 157(11):D588–D592.  https://doi.org/10.1149/1.3490764 CrossRefGoogle Scholar
  26. Halin DSC, Talib IA, Daud AR, Hamid MAA (2014) Characterizations of cuprous oxide thin films prepared by sol-gel spin coating technique with different additives for the photoelectrochemical solar cell. Int J Photoenergy 2014:352156–352156.  https://doi.org/10.1155/2014/352156 CrossRefGoogle Scholar
  27. Hamann TW, Lewis NS (2006) Control of the stability, electron-transfer kinetics, and ph-dependent energetics of Si/H2O interfaces through methyl termination of Si (111) surfaces. J Phys Chem B 110(45):22291–22294.  https://doi.org/10.1021/jp064401y CrossRefGoogle Scholar
  28. Han J, Zong X, Zhou X, Li C (2015) Cu2O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Adv 5(14):10790–10794.  https://doi.org/10.1039/C4RA13896A CrossRefGoogle Scholar
  29. Han X, Xu D, An L, Hou C, Li Y, Zhang Q, Wang H (2018) WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production. Int J Hydro Energy 43:4845–4855.  https://doi.org/10.1016/j.ijhydene.2018.01.117 CrossRefGoogle Scholar
  30. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 0(3):357–358.  https://doi.org/10.1039/A707440I CrossRefGoogle Scholar
  31. Heller A, Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) cell. Phys Rev Lett 46(17):1153–1156.  https://doi.org/10.1103/PhysRevLett.46.1153 CrossRefGoogle Scholar
  32. National Hydrogen Association; United States Department of Energy. http://www.fchea.org
  33. International Energy Outlook 2017. https://www.eia.gov/outlooks/ieo/
  34. Hu CC, Nian JN, Teng H (2008) Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol Energy Mater Sol Cells 92(9):1071–1076.  https://doi.org/10.1016/j.solmat.2008.03.012 CrossRefGoogle Scholar
  35. Huang Q, Kang F, Liu H, Lia Q, Xiao X (2013) Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J Mater Chem A 1(7):2418–2425.  https://doi.org/10.1039/C2TA00918H CrossRefGoogle Scholar
  36. Jang YJ, Park YB, Kim HE, Choi YH, Choi SH, Lee JS (2016) Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem Mater 28(17):6054–6061.  https://doi.org/10.1021/acs.chemmater.6b00460 CrossRefGoogle Scholar
  37. Jawad MF, Ismail RA, Yahea KZ (2011) Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J Mater Sci Mater Electron 22:1244–1247.  https://doi.org/10.1007/s10854-011-0294-0 CrossRefGoogle Scholar
  38. Jiang F, Wan G, Harada T, Kuang Y, Minegishi T, Domen K, Ikeda S (2015) Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J Am Chem Soc 137(42):13691–13697.  https://doi.org/10.1021/jacs.5b09015 CrossRefGoogle Scholar
  39. Jin Z, Hu Z, Yu JC, Wang J (2016) Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. J Mater Chem A 4(36):13736–13741.  https://doi.org/10.1039/C6TA05274F CrossRefGoogle Scholar
  40. Joshi UA, Palasyuk AM, Maggard PA (2011) Photoelectrochemical investigation and electronic structure of a p–type CuNbO3 photocathode. J Phys Chem C 115(27):13534–13539.  https://doi.org/10.1021/jp204631a CrossRefGoogle Scholar
  41. Joshi U, Maggard PA, CuNb3O8 (2012) A p-type semiconducting metal oxide photoelectrode. J Phys Chem Lett 3(11):1577–1581.  https://doi.org/10.1021/jz300477r CrossRefGoogle Scholar
  42. Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS (2015) Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem Rev 115(23):12839–12887.  https://doi.org/10.1021/acs.chemrev.5b00498 CrossRefGoogle Scholar
  43. Karapetyan A, Reymers A, Giorgio S, Fauquet C, Sajti L, Nitsche S, Nersesyan M, Gevorgyan V, Marine W (2015) Cuprous oxide thin films prepared by thermal oxidation of copper layer: morphological and optical properties. J Luminescence 159:325–332.  https://doi.org/10.1016/j.jlumin.2014.10.058 CrossRefGoogle Scholar
  44. Kato H, Takeda A, Kobayashi M, Hara M, Kakihana M (2013) Photocatalytic activities of Cu3xLa1−xTa7O19 solid solutions for H2 evolution under visible light irradiation. Cat Sci Technol 3(12):3147–3154.  https://doi.org/10.1039/C3CY00557G CrossRefGoogle Scholar
  45. Khaselev O, Turner JA (1998a) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427.  https://doi.org/10.1126/science.280.5362.425 CrossRefGoogle Scholar
  46. Khaselev O, Turner JA (1998b) Electrochemical stability of p - GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting. J Electrochem Soc 145(10):3335–3339.  https://doi.org/10.1149/1.1838808 CrossRefGoogle Scholar
  47. Kim B, Park GS, Chae SY, Kim MK, Oh HS, Hwang YJ, Kim W, Min BK (2018) A highly efficient Cu(In,Ga)(S,Se)2 photocathode without a heteromaterials overlayer for solar hydrogen production. Sci Rep 8:5182.  https://doi.org/10.1038/s41598-018-22827-3 CrossRefGoogle Scholar
  48. King N, Sullivan I, Watkins-Curry P, Chan JY, Maggard PA (2016) Flux-mediated syntheses, structural characterization and low- temperature polymorphism of the p-type semiconductor Cu2Ta4O11. J Solid State Chem 236:10–18.  https://doi.org/10.1016/j.jssc.2015.08.041 CrossRefGoogle Scholar
  49. Kong HJ, Won DH, Kim J, Woo SI (2016) Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem Mater 28(5):1318–1324.  https://doi.org/10.1021/acs.chemmater.5b04178 CrossRefGoogle Scholar
  50. Kosugi T, Kaneko S (1998) Novel spray-pyrolysis deposition of cuprous oxide thin films. J Am Ceram Soc 81(12):3117–3124.  https://doi.org/10.1111/j.1151-2916.1998.tb02746.x CrossRefGoogle Scholar
  51. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278.  https://doi.org/10.1039/B800489G CrossRefGoogle Scholar
  52. Latimer WM (1938) The oxidation state of the elements and their potential in aqueous solutions. Prentice-Hall, NewYorkGoogle Scholar
  53. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158(5):E45–E49.  https://doi.org/10.1149/1.3561636 CrossRefGoogle Scholar
  54. Le L, Wu Y, Zhou Z, Wang H, Xiong R, Shi J (2018) Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation. J Photochem Photobio A 351:78–86.  https://doi.org/10.1016/j.jphotochem.2017.08.073 CrossRefGoogle Scholar
  55. Lee SW, Lee YS, Heo J, Siah SC, Chua D, Brandt RE, Kim SB, Mailoa JP, Buonassisi T, Gordon RG (2014a) Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater 4(11):1–7.  https://doi.org/10.1002/aenm.201301916 CrossRefGoogle Scholar
  56. Lee M, Kim D, Yoon YT, Kim YI (2014b) Photoelectrochemical water splitting on a delafossite CuGaO2 semiconductor electrode. Bull Kor Chem Soc 35(11):3261–3266.  https://doi.org/10.5012/bkcs.2014.35.11.3261 CrossRefGoogle Scholar
  57. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735.  https://doi.org/10.1073/pnas.0603395103 CrossRefGoogle Scholar
  58. Li C, Li Y, Delaunay JJ (2014) A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. ACS Appl Mater Interfaces 6(1):480–486.  https://doi.org/10.1021/am404527q CrossRefGoogle Scholar
  59. Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, Delaunay JJ (2015) Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition af a Ga2O3 buffer layer. Energy Environ Sci 8(5):1493–1500.  https://doi.org/10.1039/C5EE00250H CrossRefGoogle Scholar
  60. Li X, Liu A, Chu D, Zhang C, Du Y, Huang J, Yang P (2018) High performance of manganese porphyrin sensitized p-type CuFe2O4 photocathode for solar water splitting to produce hydrogen in a tandem photoelectrochemical cell. Catalysts 8(3):108.  https://doi.org/10.3390/catal8030108 CrossRefGoogle Scholar
  61. Lin CY, Lai YH, Mersch D, Reisner E (2012) Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3(12):3482–3487.  https://doi.org/10.1039/C2SC20874A CrossRefGoogle Scholar
  62. Liu Q, Wang KD, Xiao XD (2010) Surface dynamics studied by time-dependent tunneling current. Front Phys China 5(4):357–368.  https://doi.org/10.1007/s11467-010-0108-5 CrossRefGoogle Scholar
  63. Liu Y, Ren F, Shen S, Fu Y, Chen C, Liu C, Xing Z, Liu D, Xiao X, Wu W, Zheng X, Liu Y, Jiang C (2015) Efficient enhancement of hydrogen production by ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell. Appl Phys Lett 106(12):123901–123905.  https://doi.org/10.1063/1.4916224 CrossRefGoogle Scholar
  64. Liu A, Zhu Y, Li K, Chu D, Huang J, Li X, Zhang C, Yang P, Du Y (2018) A high performance p-type nickel oxide/cuprous oxide nanocomposite with heterojunction as the photocathodic catalyst for water splitting to produce hydrogen. Chem Phys Let 703:56–62.  https://doi.org/10.1016/j.cplett.2018.05.020 CrossRefGoogle Scholar
  65. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Grätzel M (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16(3):1848–1857.  https://doi.org/10.1021/acs.nanolett.5b04929 CrossRefGoogle Scholar
  66. Ma G, Minegishi T, Yokoyama D, Kubota J, Domen K (2011) Photoelectrochemical hydrogen production on Cu2ZnSnS4/mo-mesh thin-film electrodes prepared by electroplating. Chemical Physics Letter 501(4–6):619–622.  https://doi.org/10.1016/j.cplett.2010.11.081 CrossRefGoogle Scholar
  67. Ma Y, Zhou X, Ma Q, Litke A, Liu P, Zhang Y, Li C, Hensen EJM (2014) Photoelectrochemical properties of CuCrO2: characterization of light absorption and photocatalytic H2 production performance. Catal Lett 144(9):1487–1493.  https://doi.org/10.1007/s10562-014-1318-1 CrossRefGoogle Scholar
  68. Mao Y, He J, Sun X, Li W, Lu X, Gan J, Liu Z, Gong L, Chen J, Liu P, Tong Y (2012) Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim Acta 62:1–7.  https://doi.org/10.1016/j.electacta.2011.10.106 CrossRefGoogle Scholar
  69. Marinder BO, Werner PE, Wahlstrom E, Malmros G (1980) Investigations on a new copper niobium oxide of LiNb3O8 type using chemical analysis and x-ray powder diffraction profile analysis. Acta Chem Scand 34(1):51–56 doi:0302-4377/80/010051-06802.50CrossRefGoogle Scholar
  70. Marsen B, Cole B, Miller EL (2008) Photoelectrolysis of water using thin copper gallium diselenide electrodes. Sol Energy Mater Sol Cells 92(9):1054–1058.  https://doi.org/10.1016/j.solmat.2008.03.009 CrossRefGoogle Scholar
  71. Mavrokefalos CK, Hasan M, Rohan JF, Compton RG, Foord JS (2017) Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation. Appl Surf Sci 408:125–134.  https://doi.org/10.1016/j.apsusc.2017.02.148 CrossRefGoogle Scholar
  72. Memming R, Schwandt G (1968) Electrochemical properties of gallium phosphide in aqueous solutions. Electrochim Acta 13(6):1299–1310.  https://doi.org/10.1016/0013-4686(68)80058-1 CrossRefGoogle Scholar
  73. Meyer BK, Polity A, Reppin D, Becker M, Hering P, Klar PJ, Sander T, Reindl C, Benz J, Eickhoff M (2012) Binary copper oxide semiconductors: from materials towards devices. Phys Status Solidi B 249(8):1487–1509.  https://doi.org/10.1002/pssb.201248128 CrossRefGoogle Scholar
  74. Minami T, Nishi Y, Miyata T (2013) Effect of the thin Ga2O3 layer in N+-Zno/N-Ga2O3/p-Cu2O heterojunction solar cells. Thin Solid Films 549:65–69.  https://doi.org/10.1016/j.tsf.2013.06.038 CrossRefGoogle Scholar
  75. Momeni MM, Ghayeb Y, Menati M (2018) Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J Mater Sci 29:4136–4146.  https://doi.org/10.1007/s10854-017-8358-4 CrossRefGoogle Scholar
  76. Morales-Guio CG, Tilley SD, Vrubel H, Grätzel M, Hu X (2014) Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun 5:4059–4059.  https://doi.org/10.1038/ncomms4059 CrossRefGoogle Scholar
  77. Morales-Guio CG, Liardet L, Mayer MT, Tilley SD, Gratzel M, Hu X (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew Chem 54(2):664–667.  https://doi.org/10.1002/anie.201410569 CrossRefGoogle Scholar
  78. Nakato Y, Yano H, Nishiura S, Ueda T, Tsubomura H (1987) Hydrogen photoevolution at p-type silicon electrodes coated with discontinuous metal layers. J Electrochem Soc 228(1–2):97–108.  https://doi.org/10.1016/0022-0728(87)80100-6 CrossRefGoogle Scholar
  79. Nian JN, Hu CC, Teng H (2008) Electrodeposited P-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int J Hydrog Energy 33(12):2897–2903.  https://doi.org/10.1016/j.ijhydene.2008.03.052 CrossRefGoogle Scholar
  80. Nikam SS, Suryawanshi MP, Bhosale SM, Gaikwad MA, Shinde PA, Moholkar AV (2016) Cu2O thin films prepared using modified successive ionic layer adsorption and reaction method and their use in photoelectrochemical solar cells. J Mater Sci Mater Electron 27(2):1897–1900.  https://doi.org/10.1007/s10854-015-3970-7 CrossRefGoogle Scholar
  81. Niu W, Moehl T, Cui W, Wick-Joliat R, Zhu L, Tilley SD (2018) Extended light harvesting with dual Cu2O-based photocathodes for high efficiency water splitting. Adv Energy Mater 8(10):1702323.  https://doi.org/10.1002/aenm.201702323 CrossRefGoogle Scholar
  82. Nolan M, Elliott SD (2006) The p-type conduction mechanism in Cu2O: a first principles study. Phy Chem Chem Phys 8(45):5350–5358.  https://doi.org/10.1039/B611969G CrossRefGoogle Scholar
  83. Ohya S, Suzuki T, Ohta K, Kaneco S, Katsumata H (2009) Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catal Today 148(3–4):329–334.  https://doi.org/10.1016/j.cattod.2009.07.077 CrossRefGoogle Scholar
  84. Önsten A, Weissenrieder J, Stoltz D, Yu S, GÖthelid M, Karlsson UO (2013) Role of defects in surface chemistry on Cu2O(111). J Phys Chem C 117(38):19357–19364.  https://doi.org/10.1021/jp3112217 CrossRefGoogle Scholar
  85. Oommen R, Rajalakshmi U, Sanjeeviraja (2012) Characteristics of electron beam evaporated and electrodeposited Cu2O thin films – comparative study. Int J Electrochem Sci 7(9):8288–8298 www.electrochemsci.org/papers/vol7/7098288.pdf Google Scholar
  86. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mate 10(6):456–461.  https://doi.org/10.1038/nmat3017 CrossRefGoogle Scholar
  87. Paracchino A, Brauer JC, Moser JE, Thimsen E, Graetzel M (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116(13):7341–7350.  https://doi.org/10.1021/jp301176y CrossRefGoogle Scholar
  88. Pawar SM, Pawar BS, Mohalkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH (2010) Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochem Acta 55(12):4057–4061.  https://doi.org/10.1016/j.electacta.2010.02.051 CrossRefGoogle Scholar
  89. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270.  https://doi.org/10.1021/ja403440e CrossRefGoogle Scholar
  90. Prévot MS, Guijarro N, Sivula K (2015) Enhancing the performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 8(8):1359–1367.  https://doi.org/10.1002/cssc.201403146 CrossRefGoogle Scholar
  91. Rai BP (1988) Cu2O solar cells: a review. Solar cells 25(3):265–272.  https://doi.org/10.1016/0379-6787(88)90065-8 CrossRefGoogle Scholar
  92. Rakhshani AE, Al-Jassar AA, Varghese J (1987) Electrodeposition and characterization of cuprous oxide. Thin Solid Films 148(2):191–201.  https://doi.org/10.1016/0040-6090(87)90157-X CrossRefGoogle Scholar
  93. Read CG, Park Y, Choi K (2012) Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J Phys Chem Lett 3(14):1872–1876.  https://doi.org/10.1021/jz300709t CrossRefGoogle Scholar
  94. Riha SC, Fedrick SJ, Sambur JB, Liu Y, Prieto AL, Parkinson BA (2011) Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering. ACS Appl Mater Interfaces 3(10):58–66.  https://doi.org/10.1021/am200849r CrossRefGoogle Scholar
  95. Saadi S, Bouguelia A, Trari M (2006) Photocatalytic hydrogen evolution over CuCrO2. Solar Energy 80(3):272–280.  https://doi.org/10.1016/j.solener.2005.02.018 CrossRefGoogle Scholar
  96. Sahoo PP, Zoellner B, Maggard PA (2015) Optical, electronic, and photoelectrochemical properties of the p-type Cu3-xVO4 semiconductor. J Mater Chem A 3(8):4501–4509.  https://doi.org/10.1039/C4TA04876H CrossRefGoogle Scholar
  97. Septina W, Ikeda S, Khan MA, Hirai T, Harada T, Matsumura M, Peter LM (2011) Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim Acta 56(13):4882–4888.  https://doi.org/10.1016/j.electacta.2011.02.075 CrossRefGoogle Scholar
  98. Shen L, Xing Z, Zou J, Li Z, Wu X, Zhang Y, Zhu Q, Yang S, Zhou W (2017) Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci Rep 7:41978 (1–11).  https://doi.org/10.1038/srep41978 CrossRefGoogle Scholar
  99. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519.  https://doi.org/10.1063/1.1736034 CrossRefGoogle Scholar
  100. Shyamal S, Hajra P, Mandal H, Singh JK, Satpati AK, Pande S, Bhattacharya C (2015) Effect of substrates on the photoelectrochemical reduction of water over cathodically electrodeposited p-type Cu2O thin films. ACS Appl Mater Interfaces 7(33):18344–18352.  https://doi.org/10.1021/acsami.5b04116 CrossRefGoogle Scholar
  101. Shyamal S, Hajra P, Mandal H, Bera A, Sariket D, Satpati AK, Kundu S, Bhattacharya C (2016) Benign role of bi on an electrodeposited Cu2O semiconductor towards photo-assisted H2 generation from water. J Mater Chem A 4(23):9244–9252.  https://doi.org/10.1039/C6TA03237K CrossRefGoogle Scholar
  102. Shyamal S, Hajra P, Mandal H, Bera A, Sariket D, Satpati AK, Malashchonak MV, Mazanik AV, Korolik OV, Kulak AI, Skorb EV, Maity A, Streltsov EA, Bhattacharya C (2018) Eu modified Cu2O thin films: significant enhancement in efficiency of photoelectrochemical processes through suppression of charge carrier recombination. Chem Eng J 335:676–684.  https://doi.org/10.1016/j.cej.2017.11.004 CrossRefGoogle Scholar
  103. Siripala W, IvanovskayaA JTF, Baeck SH, McFarland EW (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77(3):229–237.  https://doi.org/10.1016/S0927-0248(02)00343-4 CrossRefGoogle Scholar
  104. Sleight AW, Prewitt CT (1970) Preparation of CuNbO3 and CuTaO3 at high pressure. Mater Res Bull 5(3):207–211.  https://doi.org/10.1016/0025-5408(70)90008-5 CrossRefGoogle Scholar
  105. Son MK, Steier L, Schreier M, Mayer MT, Luo J, Grätzel M (2017) A copper nickel mixed oxide hole selective layer for au-free transparent cuprous oxide photocathodes. Energy Environ Sci 10(4):912–918.  https://doi.org/10.1039/C6EE03613A CrossRefGoogle Scholar
  106. Sowers KL, Fillinger A (2009) Crystal face dependence of p-Cu2O stability as photocathode. J Electrochem Soc 156(5):F80–F85.  https://doi.org/10.1149/1.3089290 CrossRefGoogle Scholar
  107. Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352.  https://doi.org/10.1038/35104620 CrossRefGoogle Scholar
  108. Stern LA, Liardet L, Mayer MT, Morales-Guio CG, Grätzel M, Hu X (2017) Photoelectrochemical deposition of CoP on cuprous oxide photocathodes for solar hydrogen production. Electrochim Acta 235:311–316.  https://doi.org/10.1016/j.electacta.2017.03.074 CrossRefGoogle Scholar
  109. Susman MD, Feldman Y, Vaskevich A, Rubinstein I (2014) Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 8(1):162–174.  https://doi.org/10.1021/nn405891g CrossRefGoogle Scholar
  110. Tanaka H, Taniguchi M, Uenishi M, Kajita N, Tan I, Nishihata Y, Mizuki J, Narita K, Kimura M, Kaneko K (2006) Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. Angew Chem 45(36):5998–6002.  https://doi.org/10.1002/anie.200503938 CrossRefGoogle Scholar
  111. Tilley SD, Schreier M, Azevedo J, Stefik M, Graetzel M (2014) Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water splitting photocathodes. Adv Funct Mater 24(3):303–311.  https://doi.org/10.1002/adfm201301106 CrossRefGoogle Scholar
  112. Tran PD, Wong LH, Barber J, Loo JS (2012) Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci 5(3):5902–5918.  https://doi.org/10.1039/C2EE02849B CrossRefGoogle Scholar
  113. Tsao J, Lewis N, Crabtree G (2006) Solar FAQs; U.S. Department of energy: 1–24Google Scholar
  114. Voiry D, Yamaguchi H, Li JW, Silva R, Alves DCB, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855.  https://doi.org/10.1038/nmat3700 CrossRefGoogle Scholar
  115. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed 51(51):12703–12706.  https://doi.org/10.1002/ange.201207111 CrossRefGoogle Scholar
  116. Vrubel H, Moehl T, Gratzel M, Hu X (2013) Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem Commun 49(79):8985–8987.  https://doi.org/10.1039/c3cc45416a CrossRefGoogle Scholar
  117. Wick R, Tilley SD (2015) Photovoltaic and photoelectrochemical solar energy conversion with Cu2O. J Phys Chem C 119(47):26243–26257.  https://doi.org/10.1021/acs.jpcc.5b08397 CrossRefGoogle Scholar
  118. Wu L, Tsui LK, Swami N, Zangari G (2010) Photoelectrochemical stability of electrodeposited Cu2O films. J Phys Chem C 114(26):11551–11556.  https://doi.org/10.1021/jp103437y CrossRefGoogle Scholar
  119. Xiong LB, Yang F, Yan LL, Yan NN, Yang X, Qiu MQ, Yu Y (2011) Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. J Phys Chem Solids 72(9):1104–1109.  https://doi.org/10.1016/j.jpcs.2011.06.016 CrossRefGoogle Scholar
  120. Yang C, Tran PD, Boix PP, Bassi PS, Yantara N, Wong LH, Barber J (2014) Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. Nanoscale 6(12):6506–6510.  https://doi.org/10.1039/C4NR00386A CrossRefGoogle Scholar
  121. Yang Y, Xu D, Wu Q, Diao P (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 6:35158.  https://doi.org/10.1038/srep35158 CrossRefGoogle Scholar
  122. Yang J, Du C, Wen Y, Zhang Z, Cho K, Chen R, Shan B (2018) Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcinations. Int J Hydrogen Ener 43:9549–9557.  https://doi.org/10.1016/j.ijhydene.2018.04.066 CrossRefGoogle Scholar
  123. Yokoyama D, Minegishi T, Maeda K, Katayama M, Kubota J, Yamada A, Konagai M, Domen K (2010) Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film. Electrochem Commun 12(6):851–853.  https://doi.org/10.1016/j.elecom.2010.04.004 CrossRefGoogle Scholar
  124. Zhang ZH, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22(6):2456–2464.  https://doi.org/10.1039/C1JM14478B CrossRefGoogle Scholar
  125. Zhang X, Song J, Jiao J, Mei X (2010) Preparation and photocatalytic activity of cuprous oxides. Solid State Sci 12(7):1215–1219.  https://doi.org/10.1016/j.solidstatesciences.2010.03.009 CrossRefGoogle Scholar
  126. Zhang Z, Dua R, Zhang L, Zhu H, Zhang H, Wang P (2013a) Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano 7(2):1709–1717.  https://doi.org/10.1021/nn3057092 CrossRefGoogle Scholar
  127. Zhang P, Shi Y, Chi M, Park JN, Stucky GD, EW MF, Gao L (2013b) Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis. Nanotechnology 24(34):345704.  https://doi.org/10.1088/0957-4484/24/34/345704 CrossRefGoogle Scholar
  128. Zoellner B, Stuart S, Chung CC, Dougherty DB, Jones JL, Maggard PA (2016) CuNb1−xTaxO3 (x ≤ 0.25) solid solutions: impact of Ta(V) substitution and Cu(I) deficiency on their structure, photocatalytic, and photoelectrochemical properties. J Mater Chem A 4(8):3115–3126.  https://doi.org/10.1039/C5TA06609C CrossRefGoogle Scholar
  129. Zong-yuan L, Gui-yun W, Xian-ping L, Yan-ji W (2013) Preparation of CuCrO2 and the photocatalytic properties of its composites. J Fuel Chem Technol 41(12):1473–1480.  https://doi.org/10.1016/S1872-5813(14)60007-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanjib Shyamal
    • 1
  • Ashis Kumar Satpati
    • 2
  • Arjun Maity
    • 3
    • 4
    Email author
  • Chinmoy Bhattacharya
    • 1
  1. 1.Department of ChemistryIndian Institute of Engineering Science & Technology (IIEST), ShibpurHowrahIndia
  2. 2.Analytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.DST/CSIR Innovation Centre, National Centre for Nanostructured MaterialsPretoriaSouth Africa
  4. 4.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations