Advertisement

Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications

  • Subrata Ghosh
  • Tom MathewsEmail author
  • S. R. Polaki
  • Sang Mun Jeong
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

The foremost challenge in energy crisis management is to meet the ever-rising demand for the seamless supply of energy to the technology-driven twenty-first century. The rising depletion of fossil fuels and environmental pollution impose an immediate need for green energy. This stimulated the fabrication of energy storage devices necessary for hybrid electric vehicles, portable electronics, and power grid systems. Supercapacitor is an important energy storage device for electric vehicle and portable electronics. However, architecting the electrode materials with suitable geometry is one of the major hurdles toward the development of energy storage devices with high-energy densities. In view of this, the current chapter focuses on the fabrication of binder-free emerging vertical nanostructures for the application as active supercapacitor electrodes. This chapter emphasizes the importance of vertical nano-architectures and critical points toward the rational design of supercapacitor electrodes. A broad overview on the recent developments of vertical nano-architectures for supercapacitor electrode applications and the future directions in achieving efficient supercapacitor devices are highlighted.

Keywords

Vertical nanostructure Supercapacitor Carbon materials 2D materials Metal oxides/hydroxides Conducting polymers 

Notes

Acknowledgment

Subrata Ghosh acknowledges financial support from Basic Science Research Program (2017R1D1A1B03028311) of the National Research Foundation of Korea. We are thankful to the anonymous reviewers for valuable suggestion and researchers for their significant contribution in the energy storage research.

References

  1. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318.  https://doi.org/10.1038/nnano.2015.40 CrossRefGoogle Scholar
  2. Al-Asadi AS, Henley LA, Wasala M, Muchharla B, Perea-Lopez N, Carozo V, Lin Z, Terrones M, Mondal K, Kordas K (2017) Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. J Appl Phys 121:124303.  https://doi.org/10.1063/1.4979098 CrossRefGoogle Scholar
  3. Balamurugan J, Li C, Thanh TD, Park O-K, Kim NH, Lee JH (2017) Hierarchical design of Cu1-xNixS nanosheets for high-performance asymmetric solid-state supercapacitors. J Mater ChemA 5:19760–19772.  https://doi.org/10.1039/C7TA04071G CrossRefGoogle Scholar
  4. Balducci A (2016) Electrolytes for high voltage electrochemical double layer capacitors: a perspective article. J Power Sources 326:534–540.  https://doi.org/10.1016/j.jpowsour.2016.05.029 CrossRefGoogle Scholar
  5. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251.  https://doi.org/10.1002/adma.201304137 CrossRefGoogle Scholar
  6. Bissett MA, Worrall SD, Kinloch IA, Dryfe RAW (2016) Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim Acta 201:30–37.  https://doi.org/10.1016/j.electacta.2016.03.190 CrossRefGoogle Scholar
  7. Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K (2018) Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett 10(2):33.  https://doi.org/10.1007/s40820-018-0188-2 CrossRefGoogle Scholar
  8. Boruah BD, Misra A (2016) A flexible ternary oxide based solid-state supercapacitor with excellent rate capability. J Mater Chem A 4:17552–17559.  https://doi.org/10.1039/C6TA07829J CrossRefGoogle Scholar
  9. Brownson DA, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976.  https://doi.org/10.1039/C2CS35105F CrossRefGoogle Scholar
  10. Chang J, Adhikari S, Lee TH, Li B, Yao F, Pham DT, Le VT, Lee YH (2015) Leaf vein-inspired nanochanneled graphene film for highly efficient micro-supercapacitors. Adv Energy Mater 5(9):1500003.  https://doi.org/10.1002/aenm.201500003 CrossRefGoogle Scholar
  11. Chen X, Long C, Lin C, Wei T, Yan J, Jiang L, Fan Z (2014) Al and Co co-doped α-Ni (OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim Acta 137:352–358.  https://doi.org/10.1016/j.electacta.2014.05.151 CrossRefGoogle Scholar
  12. Choudhary N, Li C, Chung H-S, Moore J, Thomas J, Jung Y (2016) High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10:10726–10735.  https://doi.org/10.1021/acsnano.6b06111 CrossRefGoogle Scholar
  13. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336.  https://doi.org/10.1002/adma.201605336 CrossRefGoogle Scholar
  14. Dai Z, Peng C, Chae JH, Ng KC, Chen GZ (2015) Cell voltage versus electrode potential range in aqueous supercapacitors. Sci Rep 5:9854.  https://doi.org/10.1038/srep09854 CrossRefGoogle Scholar
  15. Dive A, Banerjee S (2018) Ion storage in nanoconfined interstices between vertically aligned nanotubes in electric double-layer capacitors. J Electrochem Energy Convers Storage 15(1):011001.  https://doi.org/10.1115/1.4037582 CrossRefGoogle Scholar
  16. Dubal DP, Wu YP, Holze R (2016) Supercapacitors: from the Leyden jar to electric busses. ChemTexts 2:1–19.  https://doi.org/10.1007/s40828-016-0032-6 CrossRefGoogle Scholar
  17. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475.  https://doi.org/10.1038/ncomms2446 CrossRefGoogle Scholar
  18. Fedorovskaya EO, Bulusheva LG, Kurenya AG, Asanov IP, Rudina NA, Funtov KO, Lyubutin IS, Okotrub AV (2014) Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method. Electrochim Acta 139:165–172.  https://doi.org/10.1016/j.electacta.2014.06.176 CrossRefGoogle Scholar
  19. Fong KD, Wang T, Smoukov SK (2017) Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels 1:1857–1874.  https://doi.org/10.1039/C7SE00339K CrossRefGoogle Scholar
  20. Ghosh S, Gupta B, Ganesan K, Das A, Kamruddin M, Dash S, Tyagi AK (2016) MnO2-vertical graphene nanosheets composite electrodes for energy storage devices. Materials Today: Proceedings 3(6):1686–1692CrossRefGoogle Scholar
  21. Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M (2017a) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano-Struct Nano-Objects 10:42–50.  https://doi.org/10.1016/j.nanoso.2017.03.008 CrossRefGoogle Scholar
  22. Ghosh S, Polaki SR, Kumar N, Amirthapandian S, Kamruddin M, Ostrikov K (2017b) Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J Nanotechnol 8:1658–1670.  https://doi.org/10.3762/bjnano.8.166 CrossRefGoogle Scholar
  23. Ghosh S, Sahoo G, Polaki SR, Krishna NG, Kamruddin M, Mathews T (2017c) Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte. J Appl Phys 122:214902.  https://doi.org/10.1063/1.5002748 CrossRefGoogle Scholar
  24. Ghosh S, Jeong SM, Polaki SR (2018a) A review on metal nitride/oxynitride as an emerging supercapacitor electrode beyond oxides. Kor J Chem Eng 35(7):1389–1408.  https://doi.org/10.1007/s11814-018-0089-6 CrossRefGoogle Scholar
  25. Ghosh S, Polaki SR, Ajikumar P, Krishna NG, Kamruddin M (2018b) Aging effects on vertical graphene nanosheets and their thermal stability. Ind J Phys 92:337–342.  https://doi.org/10.1007/s12648-017-1113-0 CrossRefGoogle Scholar
  26. Ghosh S, Polaki SR, Kamruddin M, Jeong SM, Ostrikov KK (2018c) Plasma-electric field controlled growth of oriented graphene for energy storage applications. J Phys D Appl Phys 51:145303.  https://doi.org/10.1088/1361-6463/aab130 CrossRefGoogle Scholar
  27. Giri S, Ghosh D, Das CK (2014) Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv Funct Mater 24:1312–1324.  https://doi.org/10.1002/adfm.201302158 CrossRefGoogle Scholar
  28. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206.  https://doi.org/10.1016/j.rser.2015.12.249 CrossRefGoogle Scholar
  29. Gray BM, Hector AL, Jura M, Owen JR, Whittam J (2017) Effect of oxidative surface treatments on charge storage at titanium nitride surfaces for supercapacitor applications. J Mater Chem A 5:4550–4559.  https://doi.org/10.1039/C6TA08308K CrossRefGoogle Scholar
  30. Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Funct Mater 22(21):4557–4568.  https://doi.org/10.1002/adfm.201200615 CrossRefGoogle Scholar
  31. Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ (2012) Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci 5:9085–9090.  https://doi.org/10.1039/C2EE22815G CrossRefGoogle Scholar
  32. Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:12454.  https://doi.org/10.1038/srep12454 CrossRefGoogle Scholar
  33. Heller I, Kong J, Heering HA, Williams KA, Lemay SG, Dekker C (2005) Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett 5:137–142.  https://doi.org/10.1021/nl048200m CrossRefGoogle Scholar
  34. Hossain A, Bandyopadhyay P, Guin PS, Roy S (2017) Recent developed different structural nanomaterials and their performance for supercapacitor application. Appl Mater Today 9:300–313.  https://doi.org/10.1016/j.apmt.2017.08.010 CrossRefGoogle Scholar
  35. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695.  https://doi.org/10.1021/nl061576a CrossRefGoogle Scholar
  36. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903.  https://doi.org/10.1016/j.jpowsour.2010.06.036 CrossRefGoogle Scholar
  37. Jeong KH, Lee HJ, Simpson MF, Jeong SM (2016) Electrochemical synthesis of graphene/MnO2 nano-composite for application to supercapacitor electrode. J Nanosci Nanotech 16:4620–4625.  https://doi.org/10.1166/jnn.2016.11012 CrossRefGoogle Scholar
  38. Karade SS, Dubal DP, Sankapal BR (2016) MoS2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD). RSC Adv 6:39159–39165.  https://doi.org/10.1039/C6RA04441G CrossRefGoogle Scholar
  39. Karade SS, Dubal DP, Sankapal BR (2017) Decoration of ultrathin MoS2 Nanoflakes over MWCNTs: enhanced supercapacitive performance through electrode to symmetric all-solid-state device. Chemistry Select 2:10405–10412.  https://doi.org/10.1002/slct.201701788 CrossRefGoogle Scholar
  40. Khandare L, Terdale S (2017) Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci 418:22–29.  https://doi.org/10.1016/j.apsusc.2016.12.036 CrossRefGoogle Scholar
  41. Kim Y-S, Kumar K, Fisher FT, Yang E-H (2012) Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23:015301.  https://doi.org/10.1088/0957-4484/23/1/015301 CrossRefGoogle Scholar
  42. Lé T, Aradilla D, Bidan G, Billon F, Delaunay M, Gérard JM, Perrot H, Sel O (2018) Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. Electrochem Commun 93:5–9.  https://doi.org/10.1016/j.elecom.2018.05.024 CrossRefGoogle Scholar
  43. Lehmann K, Yurchenko O, Heilemann A, Vierrath S, Zielke L, Thiele S, Fischer A, Urban G (2017) High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. Carbon 118:578–587.  https://doi.org/10.1016/j.carbon.2017.03.089 CrossRefGoogle Scholar
  44. Li J, Zhang G, Chen N, Nie X, Ji B, Qu L (2017) Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors. ACS Appl Mater Interfaces 9:24840–24845.  https://doi.org/10.1021/acsami.7b05365 CrossRefGoogle Scholar
  45. Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J Power Sources 378:248–254.  https://doi.org/10.1016/j.jpowsour.2017.12.046 CrossRefGoogle Scholar
  46. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2017) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5:1700322.  https://doi.org/10.1002/advs.201700322 CrossRefGoogle Scholar
  47. Malik R, Zhang L, McConnell C, Schott M, Hsieh Y-Y, Noga R, Alvarez NT, Shanov V (2017) Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116:579–590.  https://doi.org/10.1016/j.carbon.2017.02.036 CrossRefGoogle Scholar
  48. Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28:6104–6135.  https://doi.org/10.1002/adma.201506133 CrossRefGoogle Scholar
  49. Miller J (2007) A brief history of supercapacitors, Battery+ Energy Storage Technology, 61. https://www.scribd.com/document/125843845/A-Brief-History-of-Supercapacitors
  50. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17(1):53–57.  https://doi.org/10.1201/9781420069709.ch8 CrossRefGoogle Scholar
  51. Mishra RK, Manivannan S, Kim K, Kwon H-I, Jin SH (2018) Petal-like MoS2 nanostructures with metallic 1 T phase for high performance supercapacitors. Curr Appl Phys 18:345–352.  https://doi.org/10.1016/j.cap.2017.12.010 CrossRefGoogle Scholar
  52. Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318.  https://doi.org/10.1016/j.jpowsour.2016.07.033 CrossRefGoogle Scholar
  53. Ouldhamadouche N, Achour A, Lucio-Porto R, Islam M, Solaymani S, Arman A, Ahmadpourian A, Achour H, Le Brizoual L, Djouadi MA, Brousse T (2017) Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J Mater Sci Technol 34:976.  https://doi.org/10.1016/j.jmst.2017.11.048 CrossRefGoogle Scholar
  54. Ozkan S, Nguyen NT, Hwang I, Mazare A, Schmuki P (2017) Highly conducting spaced TiO2 nanotubes enable defined conformal coating with nanocrystalline Nb2O5 and high performance supercapacitor applications. Small 13:1603821.  https://doi.org/10.1002/smll.201603821 CrossRefGoogle Scholar
  55. Qi D, Liu Y, Liu Z, Zhang L, Chen X (2016) Design of Architectures and Materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29:1602802.  https://doi.org/10.1002/adma.201602802 CrossRefGoogle Scholar
  56. Qorbani M, Naseri N, Moshfegh AZ (2015) Hierarchical Co3O4/Co (OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl Mater Interfaces 7(21):11172–11179.  https://doi.org/10.1021/acsami.5b00806 CrossRefGoogle Scholar
  57. Raj CC, Sundheep R, Prasanth R (2015) Enhancement of electrochemical capacitance by tailoring the geometry of TiO2 nanotube electrodes. Electrochim Acta 176:1214–1220.  https://doi.org/10.1016/j.electacta.2015.07.052 CrossRefGoogle Scholar
  58. Ramadoss A, Kim SJ (2013) Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J Alloys Compd 561:262–267.  https://doi.org/10.1016/j.jallcom.2013.02.015 CrossRefGoogle Scholar
  59. Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5:11427–11433.  https://doi.org/10.1021/am403663f CrossRefGoogle Scholar
  60. Raut AS, Parker CB, Stoner BR, Glass JT (2012) Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes. Electrochem Commun 19:138–141.  https://doi.org/10.1016/j.elecom.2012.03.021 CrossRefGoogle Scholar
  61. Reddy AE, Anitha T, Gopi CVM, Srinivasa Rao S, Thulasi-Varma CV, Punnoose D, Kim H-J (2017) Fabrication of a snail shell-like structured MnO2@CoNiO2 composite electrode for high performance supercapacitors. RSC Adv 7:12301–12308.  https://doi.org/10.1039/C7RA01126A CrossRefGoogle Scholar
  62. Rooth M, Quinlan RA, Widenkvist E, Lu J, Grennberg H, Holloway BC, Hårsta A, Jansson U (2009) Atomic layer deposition of titanium dioxide nanostructures using carbon nanosheets as a template. J Cryst Growth 311:373–377.  https://doi.org/10.1016/j.jcrysgro.2008.10.035 CrossRefGoogle Scholar
  63. Sahoo G, Ghosh S, Polaki SR, Mathews T, Kamruddin M (2017) Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications. Nanotechnology 28:415702.  https://doi.org/10.1088/1361-6528/aa8252 CrossRefGoogle Scholar
  64. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M (2018a) Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage. J Power Sources 401:37–48CrossRefGoogle Scholar
  65. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, Ostrikov K (2018b) Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater 14:297–305.  https://doi.org/10.1016/j.ensm.2018.05.011 CrossRefGoogle Scholar
  66. Samantara AK, Kamila S, Ghosh A, Jena BK (2018) Highly ordered 1D NiCo2O4 nanorods on graphene: an efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim Acta 263:147–157.  https://doi.org/10.1016/j.electacta.2018.01.025 CrossRefGoogle Scholar
  67. Seo DH, Yick S, Su D, Wang G, Han ZJ, Ostrikov KK (2015) Sustainable process for all-carbon electrodes: horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon 91:386–394.  https://doi.org/10.1016/j.carbon.2015.05.018 CrossRefGoogle Scholar
  68. Shi F, Li L, Wang X-l, Gu C-d, Tu J-p (2014) Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv 4:41910–41921.  https://doi.org/10.1039/C4RA06136E CrossRefGoogle Scholar
  69. Shuai X, Bo Z, Kong J, Yan J, Cen K (2017) Wettability of vertically-oriented graphenes with different intersheet distances. RSC Adv 7:2667–2675.  https://doi.org/10.1039/C6RA27428E CrossRefGoogle Scholar
  70. Sidhu NK, Rastogi AC (2014) Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res Lett 9:453.  https://doi.org/10.1186/1556-276X-9-453 CrossRefGoogle Scholar
  71. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211.  https://doi.org/10.1126/science.1249625 CrossRefGoogle Scholar
  72. Song N, Wang W, Wu Y, Xiao D, Zhao Y (2018) Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes. J Phys Chem Solids 115:148–155.  https://doi.org/10.1016/j.jpcs.2017.12.022 CrossRefGoogle Scholar
  73. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10:A250–A254.  https://doi.org/10.1149/1.2778851 CrossRefGoogle Scholar
  74. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803.  https://doi.org/10.1016/j.pmatsci.2011.08.003 CrossRefGoogle Scholar
  75. Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park Y-Y (2017) An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep 7:45048.  https://doi.org/10.1038/srep09854 CrossRefGoogle Scholar
  76. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382.  https://doi.org/10.1002/anie.200702721 CrossRefGoogle Scholar
  77. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067.  https://doi.org/10.1021/jp9113255 CrossRefGoogle Scholar
  78. Xia L, Yu L, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Mater Chem Front 1:584–618.  https://doi.org/10.1039/C6QM00169F CrossRefGoogle Scholar
  79. Yang H, Yang J, Bo Z, Zhang S, Yan J, Cen K (2016a) Edge effects in vertically-oriented graphene based electric double-layer capacitors. J Power Sources 324:309–316.  https://doi.org/10.1016/j.jpowsour.2016.05.072 CrossRefGoogle Scholar
  80. Yang H, Zhang X, Yang J, Bo Z, Hu M, Yan J, Cen K (2016b) Molecular origin of electric double-layer capacitance at multilayer graphene edges. J Phys Chem Lett 8(1):153–160.  https://doi.org/10.1021/acs.jpclett.6b02659 CrossRefGoogle Scholar
  81. Yang Z, Gong J, Tang C, Zhu W, Cheng Z, Jiang J, Ma A, Ding Q (2017) Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J Mater Sci Mater Electron 28:17533–17540.  https://doi.org/10.1007/s10854-017-7689-5 CrossRefGoogle Scholar
  82. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427.  https://doi.org/10.1021/nl200225j CrossRefGoogle Scholar
  83. Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi J-Y (2014) Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8:4580–4590.  https://doi.org/10.1021/nn500150j CrossRefGoogle Scholar
  84. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730.  https://doi.org/10.1039/C4EE03229B CrossRefGoogle Scholar
  85. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248.  https://doi.org/10.1038/srep02248 CrossRefGoogle Scholar
  86. Zhang B, Ji X, Xu K, Chen C, Xiong X, Xiong J, Yao Y, Miao L, Jiang J (2016a) Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochim Acta 217:1–8.  https://doi.org/10.1016/j.electacta.2016.09.059 CrossRefGoogle Scholar
  87. Zhang L, Sun Z, Qi J, Shi J, Hao T, Feng J (2016b) Understanding the growth mechanism of vertically aligned graphene and control of its wettability. Carbon 103:339–345.  https://doi.org/10.1016/j.carbon.2016.03.029 CrossRefGoogle Scholar
  88. Zhang Y, Zou Q, Hsu HS, Raina S, Xu Y, Kang JB, Chen J, Deng S, Xu N, Kang WP (2016c) Morphology effect of vertical graphene on its high performance of supercapacitor electrode. ACS Appl Mater Interfaces 8:7363–7369.  https://doi.org/10.1021/acsami.5b12652 CrossRefGoogle Scholar
  89. Zhang L, DeArmond D, Alvarez NT, Malik R, Oslin N, McConnell C, Adusei PK, Hsieh Y-Y, Shanov V (2017a) Flexible micro-supercapacitor based on graphene with 3D structure. Small 13:1603114.  https://doi.org/10.1002/smll.201603114 CrossRefGoogle Scholar
  90. Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017b) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17:2719–2226.  https://doi.org/10.1021/acs.nanolett.7b00854 CrossRefGoogle Scholar
  91. Zhang X, Wang S, Xu L, He T, Lu F, Li H, Ye J (2017c) Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4 sheets for high performance asymmetric supercapacitors. Ceram Int 43:14168–14175.  https://doi.org/10.1016/j.ceramint.2017.07.159 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Subrata Ghosh
    • 1
  • Tom Mathews
    • 2
    Email author
  • S. R. Polaki
    • 2
  • Sang Mun Jeong
    • 1
  1. 1.Green Energy Lab, Department of Chemical EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Surface and Nanoscience Division, Materials Science GroupIndira Gandhi Centre for Atomic Research, Homi Bhabha National InstituteKalpakkamIndia

Personalised recommendations