Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications

  • Subrata Ghosh
  • Tom MathewsEmail author
  • S. R. Polaki
  • Sang Mun Jeong
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)


The foremost challenge in energy crisis management is to meet the ever-rising demand for the seamless supply of energy to the technology-driven twenty-first century. The rising depletion of fossil fuels and environmental pollution impose an immediate need for green energy. This stimulated the fabrication of energy storage devices necessary for hybrid electric vehicles, portable electronics, and power grid systems. Supercapacitor is an important energy storage device for electric vehicle and portable electronics. However, architecting the electrode materials with suitable geometry is one of the major hurdles toward the development of energy storage devices with high-energy densities. In view of this, the current chapter focuses on the fabrication of binder-free emerging vertical nanostructures for the application as active supercapacitor electrodes. This chapter emphasizes the importance of vertical nano-architectures and critical points toward the rational design of supercapacitor electrodes. A broad overview on the recent developments of vertical nano-architectures for supercapacitor electrode applications and the future directions in achieving efficient supercapacitor devices are highlighted.


Vertical nanostructure Supercapacitor Carbon materials 2D materials Metal oxides/hydroxides Conducting polymers 



Subrata Ghosh acknowledges financial support from Basic Science Research Program (2017R1D1A1B03028311) of the National Research Foundation of Korea. We are thankful to the anonymous reviewers for valuable suggestion and researchers for their significant contribution in the energy storage research.


  1. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318. CrossRefGoogle Scholar
  2. Al-Asadi AS, Henley LA, Wasala M, Muchharla B, Perea-Lopez N, Carozo V, Lin Z, Terrones M, Mondal K, Kordas K (2017) Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications. J Appl Phys 121:124303. CrossRefGoogle Scholar
  3. Balamurugan J, Li C, Thanh TD, Park O-K, Kim NH, Lee JH (2017) Hierarchical design of Cu1-xNixS nanosheets for high-performance asymmetric solid-state supercapacitors. J Mater ChemA 5:19760–19772. CrossRefGoogle Scholar
  4. Balducci A (2016) Electrolytes for high voltage electrochemical double layer capacitors: a perspective article. J Power Sources 326:534–540. CrossRefGoogle Scholar
  5. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. CrossRefGoogle Scholar
  6. Bissett MA, Worrall SD, Kinloch IA, Dryfe RAW (2016) Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim Acta 201:30–37. CrossRefGoogle Scholar
  7. Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K (2018) Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett 10(2):33. CrossRefGoogle Scholar
  8. Boruah BD, Misra A (2016) A flexible ternary oxide based solid-state supercapacitor with excellent rate capability. J Mater Chem A 4:17552–17559. CrossRefGoogle Scholar
  9. Brownson DA, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976. CrossRefGoogle Scholar
  10. Chang J, Adhikari S, Lee TH, Li B, Yao F, Pham DT, Le VT, Lee YH (2015) Leaf vein-inspired nanochanneled graphene film for highly efficient micro-supercapacitors. Adv Energy Mater 5(9):1500003. CrossRefGoogle Scholar
  11. Chen X, Long C, Lin C, Wei T, Yan J, Jiang L, Fan Z (2014) Al and Co co-doped α-Ni (OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim Acta 137:352–358. CrossRefGoogle Scholar
  12. Choudhary N, Li C, Chung H-S, Moore J, Thomas J, Jung Y (2016) High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10:10726–10735. CrossRefGoogle Scholar
  13. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336. CrossRefGoogle Scholar
  14. Dai Z, Peng C, Chae JH, Ng KC, Chen GZ (2015) Cell voltage versus electrode potential range in aqueous supercapacitors. Sci Rep 5:9854. CrossRefGoogle Scholar
  15. Dive A, Banerjee S (2018) Ion storage in nanoconfined interstices between vertically aligned nanotubes in electric double-layer capacitors. J Electrochem Energy Convers Storage 15(1):011001. CrossRefGoogle Scholar
  16. Dubal DP, Wu YP, Holze R (2016) Supercapacitors: from the Leyden jar to electric busses. ChemTexts 2:1–19. CrossRefGoogle Scholar
  17. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475. CrossRefGoogle Scholar
  18. Fedorovskaya EO, Bulusheva LG, Kurenya AG, Asanov IP, Rudina NA, Funtov KO, Lyubutin IS, Okotrub AV (2014) Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method. Electrochim Acta 139:165–172. CrossRefGoogle Scholar
  19. Fong KD, Wang T, Smoukov SK (2017) Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels 1:1857–1874. CrossRefGoogle Scholar
  20. Ghosh S, Gupta B, Ganesan K, Das A, Kamruddin M, Dash S, Tyagi AK (2016) MnO2-vertical graphene nanosheets composite electrodes for energy storage devices. Materials Today: Proceedings 3(6):1686–1692CrossRefGoogle Scholar
  21. Ghosh S, Mathews T, Gupta B, Das A, Krishna NG, Kamruddin M (2017a) Supercapacitive vertical graphene nanosheets in aqueous electrolytes. Nano-Struct Nano-Objects 10:42–50. CrossRefGoogle Scholar
  22. Ghosh S, Polaki SR, Kumar N, Amirthapandian S, Kamruddin M, Ostrikov K (2017b) Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J Nanotechnol 8:1658–1670. CrossRefGoogle Scholar
  23. Ghosh S, Sahoo G, Polaki SR, Krishna NG, Kamruddin M, Mathews T (2017c) Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte. J Appl Phys 122:214902. CrossRefGoogle Scholar
  24. Ghosh S, Jeong SM, Polaki SR (2018a) A review on metal nitride/oxynitride as an emerging supercapacitor electrode beyond oxides. Kor J Chem Eng 35(7):1389–1408. CrossRefGoogle Scholar
  25. Ghosh S, Polaki SR, Ajikumar P, Krishna NG, Kamruddin M (2018b) Aging effects on vertical graphene nanosheets and their thermal stability. Ind J Phys 92:337–342. CrossRefGoogle Scholar
  26. Ghosh S, Polaki SR, Kamruddin M, Jeong SM, Ostrikov KK (2018c) Plasma-electric field controlled growth of oriented graphene for energy storage applications. J Phys D Appl Phys 51:145303. CrossRefGoogle Scholar
  27. Giri S, Ghosh D, Das CK (2014) Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Adv Funct Mater 24:1312–1324. CrossRefGoogle Scholar
  28. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206. CrossRefGoogle Scholar
  29. Gray BM, Hector AL, Jura M, Owen JR, Whittam J (2017) Effect of oxidative surface treatments on charge storage at titanium nitride surfaces for supercapacitor applications. J Mater Chem A 5:4550–4559. CrossRefGoogle Scholar
  30. Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Funct Mater 22(21):4557–4568. CrossRefGoogle Scholar
  31. Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ (2012) Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci 5:9085–9090. CrossRefGoogle Scholar
  32. Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:12454. CrossRefGoogle Scholar
  33. Heller I, Kong J, Heering HA, Williams KA, Lemay SG, Dekker C (2005) Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett 5:137–142. CrossRefGoogle Scholar
  34. Hossain A, Bandyopadhyay P, Guin PS, Roy S (2017) Recent developed different structural nanomaterials and their performance for supercapacitor application. Appl Mater Today 9:300–313. CrossRefGoogle Scholar
  35. Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695. CrossRefGoogle Scholar
  36. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903. CrossRefGoogle Scholar
  37. Jeong KH, Lee HJ, Simpson MF, Jeong SM (2016) Electrochemical synthesis of graphene/MnO2 nano-composite for application to supercapacitor electrode. J Nanosci Nanotech 16:4620–4625. CrossRefGoogle Scholar
  38. Karade SS, Dubal DP, Sankapal BR (2016) MoS2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD). RSC Adv 6:39159–39165. CrossRefGoogle Scholar
  39. Karade SS, Dubal DP, Sankapal BR (2017) Decoration of ultrathin MoS2 Nanoflakes over MWCNTs: enhanced supercapacitive performance through electrode to symmetric all-solid-state device. Chemistry Select 2:10405–10412. CrossRefGoogle Scholar
  40. Khandare L, Terdale S (2017) Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci 418:22–29. CrossRefGoogle Scholar
  41. Kim Y-S, Kumar K, Fisher FT, Yang E-H (2012) Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23:015301. CrossRefGoogle Scholar
  42. Lé T, Aradilla D, Bidan G, Billon F, Delaunay M, Gérard JM, Perrot H, Sel O (2018) Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. Electrochem Commun 93:5–9. CrossRefGoogle Scholar
  43. Lehmann K, Yurchenko O, Heilemann A, Vierrath S, Zielke L, Thiele S, Fischer A, Urban G (2017) High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. Carbon 118:578–587. CrossRefGoogle Scholar
  44. Li J, Zhang G, Chen N, Nie X, Ji B, Qu L (2017) Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors. ACS Appl Mater Interfaces 9:24840–24845. CrossRefGoogle Scholar
  45. Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J Power Sources 378:248–254. CrossRefGoogle Scholar
  46. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2017) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5:1700322. CrossRefGoogle Scholar
  47. Malik R, Zhang L, McConnell C, Schott M, Hsieh Y-Y, Noga R, Alvarez NT, Shanov V (2017) Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116:579–590. CrossRefGoogle Scholar
  48. Mendoza-Sánchez B, Gogotsi Y (2016) Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater 28:6104–6135. CrossRefGoogle Scholar
  49. Miller J (2007) A brief history of supercapacitors, Battery+ Energy Storage Technology, 61.
  50. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17(1):53–57. CrossRefGoogle Scholar
  51. Mishra RK, Manivannan S, Kim K, Kwon H-I, Jin SH (2018) Petal-like MoS2 nanostructures with metallic 1 T phase for high performance supercapacitors. Curr Appl Phys 18:345–352. CrossRefGoogle Scholar
  52. Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318. CrossRefGoogle Scholar
  53. Ouldhamadouche N, Achour A, Lucio-Porto R, Islam M, Solaymani S, Arman A, Ahmadpourian A, Achour H, Le Brizoual L, Djouadi MA, Brousse T (2017) Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J Mater Sci Technol 34:976. CrossRefGoogle Scholar
  54. Ozkan S, Nguyen NT, Hwang I, Mazare A, Schmuki P (2017) Highly conducting spaced TiO2 nanotubes enable defined conformal coating with nanocrystalline Nb2O5 and high performance supercapacitor applications. Small 13:1603821. CrossRefGoogle Scholar
  55. Qi D, Liu Y, Liu Z, Zhang L, Chen X (2016) Design of Architectures and Materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29:1602802. CrossRefGoogle Scholar
  56. Qorbani M, Naseri N, Moshfegh AZ (2015) Hierarchical Co3O4/Co (OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl Mater Interfaces 7(21):11172–11179. CrossRefGoogle Scholar
  57. Raj CC, Sundheep R, Prasanth R (2015) Enhancement of electrochemical capacitance by tailoring the geometry of TiO2 nanotube electrodes. Electrochim Acta 176:1214–1220. CrossRefGoogle Scholar
  58. Ramadoss A, Kim SJ (2013) Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J Alloys Compd 561:262–267. CrossRefGoogle Scholar
  59. Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5:11427–11433. CrossRefGoogle Scholar
  60. Raut AS, Parker CB, Stoner BR, Glass JT (2012) Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes. Electrochem Commun 19:138–141. CrossRefGoogle Scholar
  61. Reddy AE, Anitha T, Gopi CVM, Srinivasa Rao S, Thulasi-Varma CV, Punnoose D, Kim H-J (2017) Fabrication of a snail shell-like structured MnO2@CoNiO2 composite electrode for high performance supercapacitors. RSC Adv 7:12301–12308. CrossRefGoogle Scholar
  62. Rooth M, Quinlan RA, Widenkvist E, Lu J, Grennberg H, Holloway BC, Hårsta A, Jansson U (2009) Atomic layer deposition of titanium dioxide nanostructures using carbon nanosheets as a template. J Cryst Growth 311:373–377. CrossRefGoogle Scholar
  63. Sahoo G, Ghosh S, Polaki SR, Mathews T, Kamruddin M (2017) Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications. Nanotechnology 28:415702. CrossRefGoogle Scholar
  64. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M (2018a) Temporal-stability of plasma functionalized vertical graphene electrodes for charge storage. J Power Sources 401:37–48CrossRefGoogle Scholar
  65. Sahoo G, Polaki SR, Ghosh S, Krishna NG, Kamruddin M, Ostrikov K (2018b) Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater 14:297–305. CrossRefGoogle Scholar
  66. Samantara AK, Kamila S, Ghosh A, Jena BK (2018) Highly ordered 1D NiCo2O4 nanorods on graphene: an efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim Acta 263:147–157. CrossRefGoogle Scholar
  67. Seo DH, Yick S, Su D, Wang G, Han ZJ, Ostrikov KK (2015) Sustainable process for all-carbon electrodes: horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon 91:386–394. CrossRefGoogle Scholar
  68. Shi F, Li L, Wang X-l, Gu C-d, Tu J-p (2014) Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv 4:41910–41921. CrossRefGoogle Scholar
  69. Shuai X, Bo Z, Kong J, Yan J, Cen K (2017) Wettability of vertically-oriented graphenes with different intersheet distances. RSC Adv 7:2667–2675. CrossRefGoogle Scholar
  70. Sidhu NK, Rastogi AC (2014) Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res Lett 9:453. CrossRefGoogle Scholar
  71. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. CrossRefGoogle Scholar
  72. Song N, Wang W, Wu Y, Xiao D, Zhao Y (2018) Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes. J Phys Chem Solids 115:148–155. CrossRefGoogle Scholar
  73. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10:A250–A254. CrossRefGoogle Scholar
  74. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. CrossRefGoogle Scholar
  75. Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park Y-Y (2017) An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep 7:45048. CrossRefGoogle Scholar
  76. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382. CrossRefGoogle Scholar
  77. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067. CrossRefGoogle Scholar
  78. Xia L, Yu L, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Mater Chem Front 1:584–618. CrossRefGoogle Scholar
  79. Yang H, Yang J, Bo Z, Zhang S, Yan J, Cen K (2016a) Edge effects in vertically-oriented graphene based electric double-layer capacitors. J Power Sources 324:309–316. CrossRefGoogle Scholar
  80. Yang H, Zhang X, Yang J, Bo Z, Hu M, Yan J, Cen K (2016b) Molecular origin of electric double-layer capacitance at multilayer graphene edges. J Phys Chem Lett 8(1):153–160. CrossRefGoogle Scholar
  81. Yang Z, Gong J, Tang C, Zhu W, Cheng Z, Jiang J, Ma A, Ding Q (2017) Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J Mater Sci Mater Electron 28:17533–17540. CrossRefGoogle Scholar
  82. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427. CrossRefGoogle Scholar
  83. Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi J-Y (2014) Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8:4580–4590. CrossRefGoogle Scholar
  84. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730. CrossRefGoogle Scholar
  85. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248. CrossRefGoogle Scholar
  86. Zhang B, Ji X, Xu K, Chen C, Xiong X, Xiong J, Yao Y, Miao L, Jiang J (2016a) Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochim Acta 217:1–8. CrossRefGoogle Scholar
  87. Zhang L, Sun Z, Qi J, Shi J, Hao T, Feng J (2016b) Understanding the growth mechanism of vertically aligned graphene and control of its wettability. Carbon 103:339–345. CrossRefGoogle Scholar
  88. Zhang Y, Zou Q, Hsu HS, Raina S, Xu Y, Kang JB, Chen J, Deng S, Xu N, Kang WP (2016c) Morphology effect of vertical graphene on its high performance of supercapacitor electrode. ACS Appl Mater Interfaces 8:7363–7369. CrossRefGoogle Scholar
  89. Zhang L, DeArmond D, Alvarez NT, Malik R, Oslin N, McConnell C, Adusei PK, Hsieh Y-Y, Shanov V (2017a) Flexible micro-supercapacitor based on graphene with 3D structure. Small 13:1603114. CrossRefGoogle Scholar
  90. Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017b) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17:2719–2226. CrossRefGoogle Scholar
  91. Zhang X, Wang S, Xu L, He T, Lu F, Li H, Ye J (2017c) Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4 sheets for high performance asymmetric supercapacitors. Ceram Int 43:14168–14175. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Subrata Ghosh
    • 1
  • Tom Mathews
    • 2
    Email author
  • S. R. Polaki
    • 2
  • Sang Mun Jeong
    • 1
  1. 1.Green Energy Lab, Department of Chemical EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Surface and Nanoscience Division, Materials Science GroupIndira Gandhi Centre for Atomic Research, Homi Bhabha National InstituteKalpakkamIndia

Personalised recommendations