Studies of Multi-walled Carbon Nanotubes and Their Capabilities of Hydrogen Adsorption

  • Edgar MosqueraEmail author
  • Mauricio Morel
  • Donovan E. Diaz-Droguett
  • Nicolás Carvajal
  • Rocío Tamayo
  • Martin Roble
  • Vania Rojas
  • Rodrigo Espinoza-González
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)


Over the last decade, there has been a significant interest of the scientific community in the synthesis of carbonaceous materials due to its wide range of application, as well on the hydrogen storage problem. Since the discovery of carbon nanotubes by Iijima, carbon nanotubes have been one of the candidate nanomaterials for hydrogen storage. However, experimental studies on hydrogen storage capacity of carbon nanotubes are still very few, and the mechanism of how hydrogen is stored into carbon nanotubes and the factors affecting the adsorption remains still unclear.

In this chapter, we describe in detail the synthesis, purification, structural characterization, and hydrogen adsorption capabilities of multi-walled carbon nanotubes (MWCNTs) obtained by an aerosol-assisted chemical vapor deposition (AACVD) method and using low-cost raw materials. In our investigation, we found that the hydrogen adsorption capacity was strongly dependent on the chemical, structural, and morphological characteristics of the carbon nanotubes obtained and purified which depend on the starting materials used for the synthesis by AACVD. In addition, hydrogen storage properties of MWCNTs were studied using a quartz crystal microbalance (QCM). Values between 0.22 and 3.46 wt% of adsorbed hydrogen were reached depending on the exposure pressure at room temperature. The maximum adsorption capacity was obtained for a purified sample with specific surface area of 729.4 ± 2.8 m2 g−1 and average pore size of 22.3 nm.


Green chemistry Camphor Catalyst Aerosol-assisted CVD (AACVD) MWCNTs Purification Properties Structural study Surface area Hydrogen storage 



This research was partially funded by CONICYT (Grant no. ACT1117 and ID14I10124). We also acknowledge professor A. Cabrera from Physics Institute of the Pontificia Universidad Católica de Chile and facilities from Universidad de Chile for the provision of equipment and measurements for this research.


  1. Aboutabeli SH, Aminorroaya-Yamini S, Nevirkovets I, Konstantinov K, Liu HK (2012) Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater 2:1439–1446. CrossRefGoogle Scholar
  2. Baker RTK, Waite RJ (1975) Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J Catal 37:101–105. CrossRefGoogle Scholar
  3. Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62. CrossRefGoogle Scholar
  4. Banerjee S, Murad S, Puri IK (2006) Hydrogen storage in carbon nanostructures: possibilities and challenges for fundamental molecular simulations. Proceeding of the IEEE 94:1806–1814. CrossRefGoogle Scholar
  5. Bao J, Kishi N, Khatri I, Soga T, Jimbo T (2012) Catalyst-free synthesis of carbon nanofibers by ultrasonic spray pyrolysis of ethanol. Mater Lett 68:240–242. CrossRefGoogle Scholar
  6. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118. CrossRefGoogle Scholar
  7. Brown SDM, Jorio A, Dresselhaus MS, Dresselhaus G (2001) Observations of the D-band feature in the Raman spectra of carbon nanotubes. Phys Rev B 64:073403. CrossRefGoogle Scholar
  8. Cheng H-M, Yang Q-H, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454. CrossRefGoogle Scholar
  9. Cho W, Schulz M, Shanov V (2013) Kinetics of growing centimeter long carbon nanotube arrays, syntheses and applications of carbon nanotubes and their composites. Dr. Satoru Suzuki (Ed.), Cap 10:223–237. ISBN: 978-953-51-1125-2, InTech. doi: Google Scholar
  10. Dai LM, Mau AWH (2001) Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv Mater 13:899–913.<899:AID-ADMA899>3.0.CO;2-G CrossRefGoogle Scholar
  11. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. CrossRefGoogle Scholar
  12. Deck CP, Vecchio K (2006) Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 44:267–275. CrossRefGoogle Scholar
  13. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379. CrossRefGoogle Scholar
  14. El Far R, Diaz-Droguett DE, Rojas S, Avila JI, Romero CP, Lievens P, Cabrera AL (2012) Quantitative determination of hydrogen absorption by Pd cluster-assembled films using a quartz crystal microbalance. Thin Solid Films 522:199–203. CrossRefGoogle Scholar
  15. Esconjauregui S, Whelan CM, Maex K (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47:659–669. CrossRefGoogle Scholar
  16. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous and diamond like carbon. Phys Rev B 64:075414. CrossRefGoogle Scholar
  17. Franklin AD (2013) The road to carbon nanotube transistors. Nature 498:443–444. CrossRefGoogle Scholar
  18. Froudakis GE (2011) Hydrogen storage in nanotubes & nanostructures. Mater Today 14:324–328. CrossRefGoogle Scholar
  19. Harris PJF (1999) Carbon nanotubes and related structures: new materials for the twenty-first century, Cambridge University Press, New York. ISBN: 9780521005333Google Scholar
  20. Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multiwalled carbon nanotubes with different diameters. Carbon 41:2471–2476. CrossRefGoogle Scholar
  21. Hou CY, Zhang QH, Zhu MF, Li YG, Wang HZ (2011) One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon 49:47–53. CrossRefGoogle Scholar
  22. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  23. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605. CrossRefGoogle Scholar
  24. Jeing H, Feng Y, Chen M, Wang Y (2013) Synthesis and hydrogen-storage performance of interpenetrated MOF-5/MWCNTs hybrid composite with high mesoporosity. Int J Hydrog Energy 38:10950–10955. CrossRefGoogle Scholar
  25. Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43:533–540. CrossRefGoogle Scholar
  26. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758. CrossRefGoogle Scholar
  27. Liang JJ, Huang Y, Oh J, Kozlov M, Sui D, Fang SL, Baughman RH, Ma YF, Chen YS (2011) Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid. Adv Funct Mater 21:3778–3784. CrossRefGoogle Scholar
  28. Lim SC, Kim KK, Jeong SH, An KH, Lee S-B, Lee YH (2007) Dual quartz crystal microbalance for hydrogen storage in carbon nanotubes. Int J Hydrog Energy 32:3442–3447. CrossRefGoogle Scholar
  29. Lin K-S, Mai Y-J, Li S-R, Shu C-W, Wang C-H (2012) Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. J Nanometer 2012:1–12. CrossRefGoogle Scholar
  30. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010a) Hydrogen storage in carbon revisited. Carbon 48:452–455. CrossRefGoogle Scholar
  31. Liu H, Tagaki D, Chiashi S, Chokan T, Homma Y (2010b) Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes. J Nanosci Nanotechnol 10:4068–4073. CrossRefGoogle Scholar
  32. Lucklum R, Hauptmann P (2000) The quartz microbalance: mass sensitivity, viscoelasticity and acoustic amplification. Sensor Actuators B 70:30–36. CrossRefGoogle Scholar
  33. Mecea VM (2005) From quartz crystal microbalance to fundamental principles of mass measurements. Anal Lett 38:753–767. CrossRefGoogle Scholar
  34. Morel M, Mosquera E, Diaz-Droguett DE, Carvajal N, Roble M, Rojas V, Espinoza-González R (2015) Mineral magnetite as precursor in the synthesis of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption. Int J Hydrog Energy 40:15540–15548. CrossRefGoogle Scholar
  35. Morjan RE, Nerushev OA, Sveningsson M, Rohmund F, Falk LKL, Campbell EEB (2004) Growth of carbon nanotubes from C60. Appl Phys A Mater Sci Process 78:253–261. doi: CrossRefGoogle Scholar
  36. Mosquera E, Diaz-Droguett DE, Carvajal N, Roble M, Morel M, Espinoza R (2014) Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diam Relat Mater 43:66–71. doi: CrossRefGoogle Scholar
  37. Nerushev OA, Dittmar S, Morjan RE, Rohmund F, Campbell EEB (2003) Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. J Appl Phys 93:4185. CrossRefGoogle Scholar
  38. Panella B, Hirscher M, Siegmar R (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43:2209–2214. CrossRefGoogle Scholar
  39. Rafiee MA (2012) The study of hydrogen storage in carbon nanotubes using calculated nuclear quadrupole coupling constant (NQCC) parameters (a theoretical Ab initio study). J Comput Theor Nanosci 9:2021–2026.
  40. Reyhani A, Mortazavi SZ, Nozad Golikand A, Moshfegh AZ, Mirershadi S (2008) The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. J Power Sour 183:539–543. CrossRefGoogle Scholar
  41. Reyhani A, Mortazavi SZ, Mirershadi S, Moshfegh AZ, Parvin P, Nozad A (2011) Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. J Phys Chem C 115:6994–7001. CrossRefGoogle Scholar
  42. Sauerbrey TG (1959) Verwendug von Schwingquarzen zur Wägung dünner Schichten und zur Microwägung. Z Phys 155:206–222. CrossRefGoogle Scholar
  43. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82. CrossRefGoogle Scholar
  44. Sheng X-L, Cui H-J, Ye F, Yan Q-B, Zheng Q-R, Su G (2012) Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes and hydrogen storage. J Appl Phys 112:074315. CrossRefGoogle Scholar
  45. Singh DK, Iyer PK, Giri PK (2010) Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diamond Relat Mater 19:1281–1288. CrossRefGoogle Scholar
  46. Souza N, Roble M, Diaz-Droguett DE, Mücklich F (2017) Scaling up single-wall carbón nanotube laser annealing: effect on electrical resistance and hydrogen adsorption. RSC Adv 7:5084–5092. CrossRefGoogle Scholar
  47. Spyrou K, Gournis D, Rudolfa P (2013) Hydrogen storage in graphene-based materials: efforts towards enhanced hydrogen absorption. ECS J. Solid State Sci Technol 2:M3160–M3169. CrossRefGoogle Scholar
  48. Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlögl R, Hart AJ, Hofmann S, Wardle BL (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154. CrossRefGoogle Scholar
  49. Suzuki S (2013) Physical and chemical properties of carbon nanotubes. ISBN: 978-953-51-1002-6. InTech. doi: Google Scholar
  50. Wang CL, Krim J, Toney MF (1989) Roughness and porosity characterization of carbon and magnetic films through adsorption isotherm measurements. J Vac Sci Technol A 7:2481–2485. CrossRefGoogle Scholar
  51. Wang F-W, Lin T-C, Tzeng S-D, Chou C-T (2010) Field emission properties of carbon nanotube cathodes produced using composite plating. Appl Surf Sci 256:7600–7605. CrossRefGoogle Scholar
  52. Wang JT-W, Cabana L, Bourgognon M, Kafa H, Protti A, Venner K, Shah AM, Sosabowski JK, Mather SJ, Roig A, Ke X, Van Tendeloo G, de Rosales RTM, Tobias G, Al-Jamal KT (2014) Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents. Adv Funct Mater 24:1880–1894. CrossRefGoogle Scholar
  53. Xue YH, Chen H, Yu DS, Wang SY, Yardeni M, Dai QB, Guo MM, Liu Y, Lu F, Qu J, Dai LM (2011) Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47:11689–11691. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Edgar Mosquera
    • 1
    Email author
  • Mauricio Morel
    • 2
  • Donovan E. Diaz-Droguett
    • 3
  • Nicolás Carvajal
    • 2
  • Rocío Tamayo
    • 2
  • Martin Roble
    • 3
  • Vania Rojas
    • 2
  • Rodrigo Espinoza-González
    • 2
  1. 1.Departamento de FísicaUniversidad del ValleCaliColombia
  2. 2.Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  3. 3.Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations