Advertisement

Recent In Situ/Operando Characterization of Lithium-Sulfur Batteries

  • Yan YangEmail author
  • Yimin Zhu
  • Kumar Raju
  • Sheng Dai
  • Charl J. JaftaEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

To address the ever-increasing energy demand due to the increase in the population and at the same time depleting fossil fuel reserves, new energy storage systems, such as batteries, are being developed. Among various battery systems, Li-S batteries have comparatively high theoretical energy density and lower cost, making Li-S batteries very promising for next-generation secondary batteries. However, the current energy density and capacity decay with cycling of Li-S batteries do not fulfill the industrialization needs. To overcome the drawbacks of Li-S batteries and improve its performance, better mechanism understanding is necessary. A great deal of ex situ characterization research has been conducted making a lot of progress in the understanding of the working mechanism. Considering the complexity of the intermediate lithium polysulfides and the inherent multi-electron reaction pathways, advanced in situ/operando techniques are highly required. In this chapter, recent progress of a few typical in situ/operando characterization techniques used in Li-S battery studies is reviewed. These techniques provide more in-depth understanding of Li-S batteries in different aspects and could be enlightening for other energy storage systems too.

Keywords

Operando In situ Characterization techniques XRD SAXS TEM TXM XRF AFM 

Notes

Acknowledgments

C. J. Jafta and S. Dai were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Y. Yang and Y. M. Zhu thank the Xinghai Program (205000/02500512) and Collaborative Innovation Center for Vessel Pollution Monitoring and Control Seed Foundation (205000/017180517) of Dalian Maritime University for financial support.

References

  1. Barchasz C, Molton F, Duboc C, Lepretre JC, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980.  https://doi.org/10.1021/ac2032244 CrossRefGoogle Scholar
  2. Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. Chem Commun 49:10545–10562.  https://doi.org/10.1039/c3cc46131a CrossRefGoogle Scholar
  3. Cañas NA, Wolf S, Wagner N, Friedrich KA (2013) In-situ X-ray diffraction studies of lithium–sulfur batteries. J Power Sources 226:313–319.  https://doi.org/10.1016/j.jpowsour.2012.10.092 CrossRefGoogle Scholar
  4. Cao RG, Xu W, Lv DP, Xiao J, Zhang JG (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5:1402273.  https://doi.org/10.1002/aenm.201402273 CrossRefGoogle Scholar
  5. Cheon S-E, Ko K-S, Cho J-H, Kim S-W, Chin E-Y, Kim H-T (2003) Rechargeable lithium sulfur battery. J Electrochem Soc 150:A796–A799.  https://doi.org/10.1149/1.1571532 CrossRefGoogle Scholar
  6. Conder J, Bouchet R, Trabesinger S, Marino C, Gubler L, Villevieille C (2017) Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat Energy 2:17069.  https://doi.org/10.1038/nenergy.2017.69 CrossRefGoogle Scholar
  7. Cuisinier M, Cabelguen P-E, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar LF (2013) Sulfur speciation in li–S batteries determined by operando X-ray absorption spectroscopy. J Phys Chem Lett 4:3227–3232.  https://doi.org/10.1021/jz401763d CrossRefGoogle Scholar
  8. Fang X, Peng HS (2015) A revolution in electrodes: recent Progress in rechargeable lithium-sulfur batteries. Small 11:1488–1511.  https://doi.org/10.1002/smll.201402354 CrossRefGoogle Scholar
  9. Fu Y, Su YS, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Ed 52:6930–6935.  https://doi.org/10.1002/anie.201301250 CrossRefGoogle Scholar
  10. Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115:25132–25137.  https://doi.org/10.1021/jp207714c CrossRefGoogle Scholar
  11. Gorlin Y, Siebel A, Piana M, Huthwelker T, Jha H, Monsch G, Kraus F, Gasteiger HA, Tromp M (2015) Operando characterization of intermediates produced in a lithium-sulfur battery. J Electrochem Soc 162:A1146–A1155.  https://doi.org/10.1149/2.0081507jes CrossRefGoogle Scholar
  12. Gorlin Y, Patel MUM, Freiberg A, He Q, Piana M, Tromp M, Gasteiger HA (2016) Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J Electrochem Soc 163:A930–A939.  https://doi.org/10.1149/2.0631606jes CrossRefGoogle Scholar
  13. Hagen M, Schiffels P, Hammer M, Dorfler S, Tubke J, Hoffmann MJ, Althues H, Kaskel S (2013) In-situ Raman investigation of polysulfide formation in Li-S cells. J Electrochem Soc 160:A1205–A1214.  https://doi.org/10.1149/2.045308jes CrossRefGoogle Scholar
  14. Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5:1401986.  https://doi.org/10.1002/aenm.201401986 CrossRefGoogle Scholar
  15. Hannauer J, Scheers J, Fullenwarth J, Fraisse B, Stievano L, Johansson P (2015) The quest for Polysulfides in lithium-sulfur battery electrolytes: an operando confocal Raman spectroscopy study. ChemPhysChem 16:2755–2759.  https://doi.org/10.1002/cphc.201500448 CrossRefGoogle Scholar
  16. Huff LA, Rapp JL, Baughman JA, Rinaldi PL, Gewirth AA (2015) Identification of lithium–sulfur battery discharge products through 6 Li and 33 S solid-state MAS and 7 Li solution NMR spectroscopy. Surf Sci 631:295–300.  https://doi.org/10.1016/j.susc.2014.07.027 CrossRefGoogle Scholar
  17. Jafta CJ, Petzold A, Risse S, Clemens D, Wallacher D, Goerigk G, Ballauff M (2017) Correlating pore size and shape to local disorder in microporous carbon: a combined small angle neutron and X-ray scattering study. Carbon 123:440–447.  https://doi.org/10.1016/j.carbon.2017.07.046 CrossRefGoogle Scholar
  18. Kang WM, Deng NP, Ju JG, Li QX, Wu DY, Ma XM, Li L, Naebe M, Cheng BW (2016) A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 8:16541–16588.  https://doi.org/10.1039/c6nr04923k CrossRefGoogle Scholar
  19. Kim H, Lee JT, Magasinski A, Zhao KJ, Liu Y, Yushin G (2015) In situ TEM observation of electrochemical Lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv Energy Mater 5:1501306.  https://doi.org/10.1002/Aenm.201501306 CrossRefGoogle Scholar
  20. Kulisch J, Sommer H, Brezesinski T, Janek J (2014) Simple cathode design for Li-S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys Chem Chem Phys 16:18765–18771.  https://doi.org/10.1039/c4cp02220c CrossRefGoogle Scholar
  21. Lang S-Y, Shi Y, Guo Y-G, Wang D, Wen R, Wan L-J (2016) Insight into the interfacial process and mechanism in lithium-sulfur batteries: an in situ AFM study. Angew Chem Int Ed 55:15835–15839.  https://doi.org/10.1002/anie.201608730 CrossRefGoogle Scholar
  22. Lang S-Y, Shi Y, Guo Y-G, Wen R, Wan L-J (2017) High-temperature formation of a functional film at the cathode/electrolyte Interface in lithium-sulfur batteries: an in situ AFM study. Angew Chem Int Ed 56:14433–14437.  https://doi.org/10.1002/anie.201706979 CrossRefGoogle Scholar
  23. Lee YM, Choi N-S, Park JH, Park J-K (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119–121:964–972.  https://doi.org/10.1016/s0378-7753(03)00300-8 CrossRefGoogle Scholar
  24. Li YZ, Li YB, Pei AL, Yan K, Sun YM, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, Perrino J, Butz B, Chu S, Cui Y (2017) Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358:506–510.  https://doi.org/10.1126/science.aam6014 CrossRefGoogle Scholar
  25. Lin C-N, Chen W-C, Song Y-F, Wang C-C, Tsai L-D, Wu N-L (2014) Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy. J Power Sources 263:98–103.  https://doi.org/10.1016/j.jpowsour.2014.04.003 CrossRefGoogle Scholar
  26. Lowe MA, Gao J, Abruna HD (2014) Mechanistic insights into operational lithium-sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Adv 4:18347–18353.  https://doi.org/10.1039/c4ra01388c CrossRefGoogle Scholar
  27. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787.  https://doi.org/10.1021/cr500062v CrossRefGoogle Scholar
  28. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969.  https://doi.org/10.1149/1.1806394 CrossRefGoogle Scholar
  29. Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrews JC, Yi C, Toney MF (2012) In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134:6337–6343.  https://doi.org/10.1021/ja2121926 CrossRefGoogle Scholar
  30. Paolella A, Zhu W, Marceau H, Kim C-s, Feng Z, Liu D, Gagnon C, Trottier J, Abdelbast G, Hovington P, Vijh A, Demopoulos GP, Armand M, Zaghib K (2016) Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery. J Power Sources 325:641–645.  https://doi.org/10.1016/j.jpowsour.2016.06.086 CrossRefGoogle Scholar
  31. Patel MUM, Dominko R (2014) Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries. ChemSusChem 7:2167–2175.  https://doi.org/10.1002/cssc.201402215 CrossRefGoogle Scholar
  32. Patel MUM, Arcon I, Aquilanti G, Stievano L, Mali G, Dominko R (2014) X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. ChemPhysChem 15:894–904.  https://doi.org/10.1002/cphc.201300972 CrossRefGoogle Scholar
  33. Peled E, Gorenshtein A, Segal M, Sternberg Y (1989) Rechargeable lithium sulfur battery. J Power Sources 26:269–271.  https://doi.org/10.1016/0378-7753(89)80133-8 CrossRefGoogle Scholar
  34. Peng HJ, Huang JQ, Zhang Q (2017) A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem Soc Rev 46:5237–5288.  https://doi.org/10.1039/c7cs00139h CrossRefGoogle Scholar
  35. Petzold A, Juhl A, Scholz J, Ufer B, Goerigk G, Froba M, Ballauff M, Mascotto S (2016) Distribution of sulfur in carbon/sulfur nanocomposites analyzed by small-angle X-ray scattering. Langmuir 32:2780–2786.  https://doi.org/10.1021/acs.langmuir.5b04734 CrossRefGoogle Scholar
  36. Pope MA, Aksay IA (2015) Structural Design of Cathodes for Li-S batteries. Adv Energy Mater 5:1500124.  https://doi.org/10.1002/aenm.201500124 CrossRefGoogle Scholar
  37. Risse S, Jafta CJ, Yang Y, Kardjilov N, Hilger A, Manke I, Ballauff M (2016) Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography. Phys Chem Chem Phys 18:10630–10636.  https://doi.org/10.1039/c6cp01020b CrossRefGoogle Scholar
  38. Saqib N, Ohlhausen GM, Porter JM (2017a) In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell. J Power Sources 364:266–271.  https://doi.org/10.1016/j.jpowsour.2017.08.030 CrossRefGoogle Scholar
  39. Saqib N, Silva CJ, Maupin CM, Porter JM (2017b) A novel optical diagnostic for in situ measurements of lithium Polysulfides in battery electrolytes. Appl Spectrosc 71:1593–1599.  https://doi.org/10.1177/0003702816684638 CrossRefGoogle Scholar
  40. Schneider A, Weidmann C, Suchomski C, Sommer H, Janek J, Brezesinski T (2015) Ionic liquid-derived nitrogen-enriched carbon/sulfur composite cathodes with hierarchical microstructure—a step toward durable high-energy and high-performance lithium–sulfur batteries. Chem Mater 27:1674–1683.  https://doi.org/10.1021/cm504460p CrossRefGoogle Scholar
  41. See KA, Leskes M, Griffin JM, Britto S, Matthews PD, Emly A, Van der Ven A, Wright DS, Morris AJ, Grey CP, Seshadri R (2014) Ab initio structure search and in situ Li-7 NMR studies of discharge products in the Li-S battery system. J Am Chem Soc 136:16368–16377.  https://doi.org/10.1021/ja508982p CrossRefGoogle Scholar
  42. Sun Y, Seh ZW, Li W, Yao H, Zheng G, Cui Y (2015) In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries. Nano Energy 11:579–586.  https://doi.org/10.1016/j.nanoen.2014.11.001 CrossRefGoogle Scholar
  43. Sun F, Osenberg M, Dong K, Zhou D, Hilger A, Jafta CJ, Risse S, Yan L, Markötter H, Manke I (2018) Correlating morphological evolution of Li electrodes with degrading electrochemical performance of Li/LiCoO2 and Li/S battery systems: investigated by synchrotron X-ray phase contrast tomography. ACS Energy Lett 3:356–365.  https://doi.org/10.1021/acsenergylett.7b01254 CrossRefGoogle Scholar
  44. Urbonaite S, Poux T, Novák P (2015) Progress towards commercially viable Li-S battery cells. Adv Energy Mater 5:1500118.  https://doi.org/10.1002/aenm.201500118 CrossRefGoogle Scholar
  45. Waluś S, Barchasz C, Colin JF, Martin JF, Elkaim E, Lepretre JC, Alloin F (2013) New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization. Chem Commun 49:7899–7901.  https://doi.org/10.1039/c3cc43766c CrossRefGoogle Scholar
  46. Waluś S, Barchasz C, Bouchet R, Leprêtre J-C, Colin J-F, Martin J-F, Elkaïm E, Baehtz C, Alloin F (2015) Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv Energy Mater 5.  https://doi.org/10.1002/aenm.201500165 CrossRefGoogle Scholar
  47. Wang Q, Zheng JM, Walter E, Pan HL, Lv DP, Zuo PJ, Chen HH, Deng ZD, Liaw BY, Yu XQ, Yang XQ, Zhang JG, Liu J, Xiao J (2015) Direct observation of sulfur radicals as reaction Media in lithium sulfur batteries. J Electrochem Soc 162:A474–A478.  https://doi.org/10.1149/2.0851503jes CrossRefGoogle Scholar
  48. Wang H, Sa N, He M, Liang X, Nazar LF, Balasubramanian M, Gallagher KG, Key B (2017a) In situ NMR observation of the temporal speciation of lithium sulfur batteries during electrochemical cycling. J Phys Chem C 121:6011–6017.  https://doi.org/10.1021/acs.jpcc.7b01922 CrossRefGoogle Scholar
  49. Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang JG, Liu J, Meng YS (2017b) New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett 17:7606–7612.  https://doi.org/10.1021/acs.nanolett.7b03606 CrossRefGoogle Scholar
  50. Wu H-L, Huff LA, Gewirth AA (2015) In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl Mater Interface 7:1709–1719.  https://doi.org/10.1021/am5072942 CrossRefGoogle Scholar
  51. Wujcik KH, Pascal TA, Pemmaraju CD, Devaux D, Stolte WC, Balsara NP, Prendergast D (2015) Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium-sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first-principles calculations. Adv Energy Mater 5:1500285.  https://doi.org/10.1002/aenm.201500285 CrossRefGoogle Scholar
  52. Wujcik KH, Wang DR, Raghunathan A, Drake M, Pascal TA, Prendergast D, Balsara NP (2016) Lithium polysulfide radical anions in ether-based solvents. J Phys Chem C 120:18403–18410.  https://doi.org/10.1021/acs.jpcc.6b04264 CrossRefGoogle Scholar
  53. Wujcik KH, Wang DR, Pascal TA, Prendergast D, Balsara NP (2017) In situ X-ray absorption spectroscopy studies of discharge reactions in a thick cathode of a lithium sulfur battery. J Electrochem Soc 164:A18–A27.  https://doi.org/10.1149/2.1441614jes CrossRefGoogle Scholar
  54. Xiao J, Jian Zhi H, Chen H, Vijayakumar M, Zheng J, Pan H, Walter ED, Mary H, Deng X, Feng J, Liaw BY, Meng G, Deng ZD, Dongping L, Suochang X, Wang C, Liu J (2015) Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett 15:3309–3316.  https://doi.org/10.1021/acs.nanolett.5b00521 CrossRefGoogle Scholar
  55. Xu R, Belharouak I, Zhang XF, Chamoun R, Yu C, Ren Y, Nie AM, Shahbazian-Yassar R, Lu J, Li JCM, Amine K (2014) Insight into sulfur reactions in Li-S batteries. ACS Appl Mater Interfaces 6:21938–21945.  https://doi.org/10.1021/am504763p CrossRefGoogle Scholar
  56. Xu R, Lu J, Amine K (2015) Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv Energy Mater 5:1500408.  https://doi.org/10.1002/Aenm.201500408 CrossRefGoogle Scholar
  57. Yan J, Liu X, Li B (2016) Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries. Adv Sci 3:1600101.  https://doi.org/10.1002/advs.201600101 CrossRefGoogle Scholar
  58. Yang Z, Zhu Z, Ma J, Xiao D, Kui X, Yao Y, Yu R, Wei X, Gu L, Hu Y-S, Li H, Zhang X (2016) Phase separation of Li2S/S at nanoscale during electrochemical Lithiation of the solid-state lithium-sulfur battery using in situ TEM. Adv Energy Mater 6:1600806.  https://doi.org/10.1002/aenm.201600806 CrossRefGoogle Scholar
  59. Yang Y, Risse S, Mei S, Jafta CJ, Yan L, Stöcklein C, Kardjilov N, Manke I, Gong J, Kochovski Z (2017) Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography. Energy Storage Mater 9:96–104.  https://doi.org/10.1016/j.ensm.2017.06.008 CrossRefGoogle Scholar
  60. Yao ZD, Wei W, Wang JL, Yang J, Nuli YN (2011) Review of sulfur-based cathodes for high performance lithium rechargeable batteries. Acta Phys Chem Sin 27:1005–1016.  https://doi.org/10.3866/Pku.Whxb20110345 CrossRefGoogle Scholar
  61. Yeon JT, Jang JY, Han JG, Cho J, Lee KT, Choi NS (2012) Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge. J Electrochem Soc 159:A1308–A1314.  https://doi.org/10.1149/2.080208jes CrossRefGoogle Scholar
  62. Yu XQ, Pan HL, Zhou YN, Northrup P, Xiao J, Bak S, Liu MZ, Nam KW, Qu DY, Liu J, Wu TP, Yang XQ (2015) Direct observation of the redistribution of sulfur and Polysufides in Li-S batteries during the first cycle by in situ X-ray fluorescence microscopy. Adv Energy Mater 5:1500072.  https://doi.org/10.1002/aenm.201500072 CrossRefGoogle Scholar
  63. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162.  https://doi.org/10.1016/j.jpowsour.2012.12.102 CrossRefGoogle Scholar
  64. Zhang S, Ueno K, Dokko K, Watanabe M (2015) Recent advances in electrolytes for lithium-sulfur batteries. Adv Energy Mater 5:1500117.  https://doi.org/10.1002/aenm.201500117 CrossRefGoogle Scholar
  65. Zhang G, Zhang Z-W, Peng H-J, Huang J-Q, Zhang Q (2017) A toolbox for lithium-sulfur battery research: methods and protocols. Small Methods 1:1700134.  https://doi.org/10.1002/smtd.201700134 CrossRefGoogle Scholar
  66. Zu C, Manthiram A (2014) High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content. Adv Energy Mater 4:1400897.  https://doi.org/10.1002/aenm.201400897 CrossRefGoogle Scholar
  67. Zu C, Fu Y, Manthiram A (2013) Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. J Mater Chem A 1:10362–10367.  https://doi.org/10.1039/c3ta11958k CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center for Vessel Pollution Monitoring and ControlDalian Maritime UniversityDalianChina
  2. 2.Energy Materials, Council for Scientific and Industrial ResearchPretoriaSouth Africa
  3. 3.Chemical Science DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations