Advertisement

Recent Progress of Carbon Dioxide Conversion into Renewable Fuels and Chemicals Using Nanomaterials

  • Harisekhar MittaEmail author
  • Putrakumar Balla
  • Nagaraju Nekkala
  • Krishna Murthy Bhaskara
  • Rajender Boddula
  • Vijyakumar Kannekanti
  • Ramachandra Rao Kokkerapati
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

Currently, global emissions of carbon dioxide (CO2) have caused serious issues with environmental contamination and global warming. Thus, for the sustained development of a clean society, the highly efficient conversion of CO2 into renewable liquid fuels and chemicals via greenery and novel chemical processes is very desirable. This chapter provides an overview of recent developments in efficient nanomaterial-based catalysts, which have led to several discoveries in the catalytic conversion of CO2 into desired liquid fuels and chemicals. Various technologies are also summarized, such as photochemical and electrochemical CO2 conversion. These two processes have received great attention because their prospective pathways can diminish the amount of atmospheric CO2. In this chapter, recent research advances on the nanostructure catalysts and the general parameters for CO2 conversion. Further increases in the selective formation of various desired reductive products, such as HCOOH/HCOO, CO, CH3OH, CH3CH2OH, CH4, and C2H4, are also presented. An understanding of these topics is necessary to design novel nanomaterial catalysts for the efficient and selective reduction of CO2.

Keywords

CO2 conversion Liquid fuel chemicals Electrochemical Photochemical Advanced nanostructure materials Cu TiO2 g-C3N4 

Notes

Acknowledgements

We acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support.

References

  1. Anjana S, Eduardo GE, Thomas W, Andrey S, Melinda M, Anne-Riikka R, Pitkanen O, Tiva S, Krisztian K, Jyri-Pekka M (2016) Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: understanding the reduction pathway. Nano Res 9(7):1956–1968.  https://doi.org/10.1007/s12274-016-1087-9 CrossRefGoogle Scholar
  2. Arai T, Tajima S, Sato S, Uemura K, Morikawa T, Kajino T (2011) Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem Commun 47:12664–12666.  https://doi.org/10.1039/C1CC16160A CrossRefGoogle Scholar
  3. Baturina OA, Lu Q, Padilla MA, Xin L, Li W, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins GE (2014) CO2 Electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal 4(10):3682–3695.  https://doi.org/10.1021/cs500537y CrossRefGoogle Scholar
  4. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99.  https://doi.org/10.1039/b804323j CrossRefGoogle Scholar
  5. Cao L, Raciti D, Li C, Livi KJT, Rottmann PF, Hemker KJ, Mueller T, Wang C (2017) Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal 7(12):8578–8587.  https://doi.org/10.1021/acscatal.7b03107 CrossRefGoogle Scholar
  6. Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun 48:58–60.  https://doi.org/10.1039/C1CC16107E CrossRefGoogle Scholar
  7. Cheng M, Yang S, Chen R, Zhu X, Liao Q, Huang Y (2017a) Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. Int J Hydrog Energy 42:9722–9732.  https://doi.org/10.1016/j.ijhydene.2017.01.126 CrossRefGoogle Scholar
  8. Cheng X, Dong P, Huang ZF, Zhang ZY, Chen Y, Nie X, Zhan X (2017b) Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J CO2 Util 20:200–207.  https://doi.org/10.1016/j.jcou.2017.04.009 CrossRefGoogle Scholar
  9. Cheng M, Yang S, Chen R, Zhu X, Liao Q, Huang Y (2017c) Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. Int J Hydrog Energy 42:9711–9732.  https://doi.org/10.1016/j.ijhydene.2017.01.126 CrossRefGoogle Scholar
  10. David OA, Muhammad T (2017) Nor Aishah SA (2017) g-C3N4/(cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light. J CO2 Util 18:261–274.  https://doi.org/10.1016/j.jcou.2017.02.004 CrossRefGoogle Scholar
  11. Dong WJ, Yoo CJ, Lee JL (2017) Monolithic nanoporous In-Sn alloy for electrochemical reduction of carbon dioxide. ACS Appl Mater Interfaces 9(50):43575–43582.  https://doi.org/10.1021/acsami.7b10308 CrossRefGoogle Scholar
  12. Dutta A, Rahaman M, Mohos M, Zanetti A, Broekmann P (2017) Electrochemical CO2 conversion using skeleton (Sponge) type of Cu catalysts. ACS Catal 7(8):5431–5437.  https://doi.org/10.1021/acscatal.7b01548 CrossRefGoogle Scholar
  13. Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai Suresh C (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C: Photochem Rev 25:1–29.  https://doi.org/10.1016/j.jphotochemrev.2015.08.003 CrossRefGoogle Scholar
  14. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21.  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  15. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291.  https://doi.org/10.1021/jacs.5b00046 CrossRefGoogle Scholar
  16. Garcia IM, Albo J, Irabien A (2017) Productivity and selectivity of gas phase CO2 electroreduction to methane at Cu nanoparticle-based electrodes. Energ Technol 5(6):922–928.  https://doi.org/10.1002/ente.201600616 CrossRefGoogle Scholar
  17. Guo J, Ouyang S, Kako T, Ye J (2013) Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels. Appl Surf Sci 280:418–423.  https://doi.org/10.1016/j.apsusc.2013.05.003 CrossRefGoogle Scholar
  18. Hao W, Zheng SK, Wang C WTM (2002) Comparison of the photocatalytic activity of TiO2 powder with different particle size. J Mater Sci Lett 21:1627–1629.  https://doi.org/10.1023/A:1020386019893 CrossRefGoogle Scholar
  19. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285.  https://doi.org/10.1143/JJAP.44.8269 CrossRefGoogle Scholar
  20. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electro Acta 39(11):1833–1839.  https://doi.org/10.1016/0013-4686(94)85172-7 CrossRefGoogle Scholar
  21. Hossain MN, Wen J, Chen A (2017) Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Sci Rep 7(1):3184.  https://doi.org/10.1038/s41598-017-03601-3 CrossRefGoogle Scholar
  22. Hua B, Stancovski V, Morton M, Suib SL (2010) Enhanced electrocatalytic reduction of CO2/H2O to paraformaldehyde at Pt/metal oxide interfaces. Appl Catal A 382(2):277–283.  https://doi.org/10.1016/j.apcata.2010.05.008 CrossRefGoogle Scholar
  23. Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc 133:18122–18125.  https://doi.org/10.1021/ja208760j CrossRefGoogle Scholar
  24. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638.  https://doi.org/10.1038/277637a0 CrossRefGoogle Scholar
  25. Jeon HS, Kunze S, Scholten F, Cuenya BR (2018) Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal 8(1):531–535.  https://doi.org/10.1021/acscatal.7b02959 CrossRefGoogle Scholar
  26. Jian P, Xia W, Lianzhou W, Gang L, Gao QL, Hui-MC (2011) Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363.  https://doi.org/10.1039/c1cc13034j CrossRefGoogle Scholar
  27. Jones JP, Prakash GKS, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Israel J of Chem 54(10):1451–1466.  https://doi.org/10.1002/ijch.201400081 CrossRefGoogle Scholar
  28. Kaneco S, Iiba K, Yabuuchi M, Nishio N, Ohnishi H, Katsumata H, Suzuki T, Ohta K (2002) High efficiency electrochemical CO2-to-methane conversion method using methanol with lithium supporting electrolytes. Ind Eng Chem Res 41(21):5165–5170.  https://doi.org/10.1021/ie0200454 CrossRefGoogle Scholar
  29. Kas R, Kortlever R, Yılmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. Chem Electro Chem 2(3):354–358.  https://doi.org/10.1002/celc.201402373 CrossRefGoogle Scholar
  30. Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using Au-Cu bimetallic nanoparticles. Nat Commun 5:4948.  https://doi.org/10.1038/ncomms5948 CrossRefGoogle Scholar
  31. Kim D, Xie C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Nørskov JK, Yang P (2017a) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139(24):8329–8336.  https://doi.org/10.1021/jacs.7b03516 CrossRefGoogle Scholar
  32. Kim H, Park HS, Hwang YJ, Min BK (2017b) Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction. J Phys Chem C 121(41):22637–22643.  https://doi.org/10.1021/acs.jpcc.7b06286 CrossRefGoogle Scholar
  33. Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89(3):494–502.  https://doi.org/10.1016/j.apcatb.2009.01.010 CrossRefGoogle Scholar
  34. Kong D, Tan JZY, Yang F, Jieliang Z, Xiwen Z (2013) Electro deposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl Surf Sci 277:105–110.  https://doi.org/10.1016/j.apsusc.2013.04.010 CrossRefGoogle Scholar
  35. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278.  https://doi.org/10.1039/b800489g CrossRefGoogle Scholar
  36. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113.  https://doi.org/10.1021/ja505791r CrossRefGoogle Scholar
  37. Kung CW, Audu CO, Peters AW, Noh H, Farha OK, Hupp JT (2017) Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett 2(10):2394–2401.  https://doi.org/10.1021/acsenergylett.7b00621 CrossRefGoogle Scholar
  38. Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 7:12697.  https://doi.org/10.1038/ncomms12697 CrossRefGoogle Scholar
  39. Li X, Li W, Zhuang Z, Zhong Y, Li Q, Wang L (2012) Photocatalytic reduction of carbon dioxide to methane over SiO2-pillared HNb3O8. J Phys Chem C 116:16047–16053.  https://doi.org/10.1021/jp303365z CrossRefGoogle Scholar
  40. Li CW, Ciston J, Kanan MW (2014a) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508(7497):504–507.  https://doi.org/10.1038/nature13249 CrossRefGoogle Scholar
  41. Li X, Wen J, Low J, Fang Y, Yu J (2014b) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 1(57):70–100.  https://doi.org/10.1016/j.apsusc.2017.10.194 CrossRefGoogle Scholar
  42. Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S (2016) Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24:1–9.  https://doi.org/10.1016/j.nanoen.2016.03.024 CrossRefGoogle Scholar
  43. Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P (2017a) Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett 17(2):1312–1317.  https://doi.org/10.1021/acs.nanolett.6b05287 CrossRefGoogle Scholar
  44. Li K, Peng B, Jin J, Zan L, Peng T (2017b) Carbon nitride nano dots decorated brookiteTiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Appl Catal B: Environ 203:910–916.  https://doi.org/10.1016/j.apcatb.2016.11.001 CrossRefGoogle Scholar
  45. Linsebigler A, Guangquan L, John TY (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95(3):735–758.  https://doi.org/10.1021/cr00035a013 CrossRefGoogle Scholar
  46. Liu YJ, Garg B, Ling YC (2011) CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1.32Cr0.66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH. Green Chem 13:2029–2031.  https://doi.org/10.1039/C1GC15078B CrossRefGoogle Scholar
  47. Liu Q, Zhou Y, Tian Z, Chen X, Gao J, Zou Z (2012a) Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J Mater Chem 22:2033–2038.  https://doi.org/10.1039/C1JM14122H CrossRefGoogle Scholar
  48. Liu Y, Zhao H, Andino JM, Li Y (2012b) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2(8):1817–1828.  https://doi.org/10.1021/cs300273q CrossRefGoogle Scholar
  49. Liu EZ, Qi LL, Bian JJ, Chen YH, Hu XY, Fan J (2015) A facile strategy to fabricate plasmonic Cu modified TiO2 nanoflower films for photocatalytic reduction of CO2 to methanol. Mater Res Bull 68:203–209.  https://doi.org/10.1016/j.materresbull.2015.03.064 CrossRefGoogle Scholar
  50. Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo JL (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139(6):2160–2163.  https://doi.org/10.1021/jacs.6b12103 CrossRefGoogle Scholar
  51. Ma M, Djanashvili K, Smith WA (2015) Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys Chem Chem Phys 17(32):20861–20867.  https://doi.org/10.1039/c5cp03559g CrossRefGoogle Scholar
  52. Marepally BC, Ampelli C, Genovese C, Tavella F, Veyre L, Elsje Quadrelli A, Perathoner S, Centi G (2017) Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. J CO2 Util 21:534–542.  https://doi.org/10.1016/j.jcou.2017.08.008 CrossRefGoogle Scholar
  53. Mistrya H, Reske R, Strasser P, Cuenya BR (2017) Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal Today 288(15):30–36.  https://doi.org/10.1016/j.cattod.2016.09.017 CrossRefGoogle Scholar
  54. Mizuno T, Ohta K, Sasaki A, Akai T, Hirano M, Kawabe A (1995) Effect of temperature on electrochemical reduction of high-pressure CO2 with In, Sn, and Pb Electrodes. Energy Sour 17:503–208.  https://doi.org/10.1080/00908319508946098 CrossRefGoogle Scholar
  55. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  56. Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Photo energy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84(1):103–111.  https://doi.org/10.1016/j.electacta.2012.03.035 CrossRefGoogle Scholar
  57. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y (2014) High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed Engl 53(3):871–874.  https://doi.org/10.1002/anie.201308657 CrossRefGoogle Scholar
  58. Nguyen NH, Wu HY, Bai H (2015) Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chem Eng J 269:60–66.  https://doi.org/10.1016/j.cej.2015.01.099 CrossRefGoogle Scholar
  59. Niu P, Yin LC, Yang YQ, Liu G, Cheng HM (2014) Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv Mater 26:8046–8052.  https://doi.org/10.1002/adma.201404057 CrossRefGoogle Scholar
  60. Ola O, Maroto-Valer MM (2015) Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Appl Catal Gen A 502:114–121.  https://doi.org/10.1016/j.apcata.2015.06.007 CrossRefGoogle Scholar
  61. Park H, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22:5304–5307.  https://doi.org/10.1039/C2JM30337 CrossRefGoogle Scholar
  62. Peng Y, Wu T, Sun L, Nsanzimana JMV, Fisher AC, Wang X (2017) Selective electrochemical reduction of CO2 to ethylene on Nanopores-modified copper electrodes in aqueous solution. ACS Appl Mater Interfaces 9(38):32782–32789.  https://doi.org/10.1021/acsami.7b10421 CrossRefGoogle Scholar
  63. Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR (2017) Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J Am Chem Soc 139(11):4052–4061.  https://doi.org/10.1021/jacs.6b12217 CrossRefGoogle Scholar
  64. Roy C, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278.  https://doi.org/10.1021/nn9015423 CrossRefGoogle Scholar
  65. Ryu A (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209.  https://doi.org/10.1016/j.jphotochemrev.2011.02.003 CrossRefGoogle Scholar
  66. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105.  https://doi.org/10.1002/anie.201000613 CrossRefGoogle Scholar
  67. Shan C, Martin ET, Peters DG, Zaleski JM (2017) Site-selective growth of AgPd nano dendrite-modified Au nanoprisms: high electrocatalytic performance for CO2 reduction. Chem Mater 29(14):6030–6043.  https://doi.org/10.1021/acs.chemmater.7b01813 CrossRefGoogle Scholar
  68. Sun K, Cheng T, Wu L, Hu Y, Zhou J, Maclennan A, Jiang Z, Gao Y, Goddard WA, Wang Z (2017) Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc 139(44):15608–15611.  https://doi.org/10.1021/jacs.7b09251 CrossRefGoogle Scholar
  69. Suzuki TM, Tanaka H, Morikawa T, Iwaki M, Sato S, Saeki S, Inoue M, Kajino T, Motohiro T (2011) Direct assembly synthesis of metal complex–semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. Chem Commun 47:8673–8675.  https://doi.org/10.1039/C1CC12491A CrossRefGoogle Scholar
  70. Tahir B, Tahir M, Amin NAS (2017) Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy. Appl Surf Sci 419:875–885.  https://doi.org/10.1016/j.apsusc.2017.05.117 CrossRefGoogle Scholar
  71. Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Photo-reduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154.  https://doi.org/10.1016/j.cplett.2012.02.016 CrossRefGoogle Scholar
  72. Tan LL, Ong WJ, Chai SP, Mohamed AR (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photo reduction of carbon dioxide into methane. Appl Catal B Environ 166:251–259.  https://doi.org/10.1016/j.apcatb.2014.11.035 CrossRefGoogle Scholar
  73. Tang Q, Lee Y, Li DY, Choi W, Liu CW, Lee D, Jiang DE (2017) Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc 139(28):9728–9736.  https://doi.org/10.1021/jacs.7b05591 CrossRefGoogle Scholar
  74. Todoroki M, Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J Electroanal Chem 394(1–2):199–203.  https://doi.org/10.1016/0022-0728(95)04010-L CrossRefGoogle Scholar
  75. Trindell JA, Clausmeyer J, Crooks RM (2017) Size stability and H2/CO selectivity for Au nanoparticles during electrocatalytic CO2 reduction. J Am Chem Soc 139(45):16161–16167.  https://doi.org/10.1021/jacs.7b06775 CrossRefGoogle Scholar
  76. Varghese OK, Paulose M, Tempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydro carbon fuels. Nano Lett 9:731–737.  https://doi.org/10.1021/nl803258p CrossRefGoogle Scholar
  77. Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photo catalytic reduction and oxidation processes of hydro thermally synthesized titania nano tubes. J Phys Chem C 114:12994–13002.  https://doi.org/10.1021/jp104345h CrossRefGoogle Scholar
  78. Wei H, Xie K, Zhang J, Zhang Y, Wang Y, Qin Y, Cui J, Yan J, Wu Y (2014) In situ growth of Ni(x)Cu(1-x) alloy nanocatalysts on redox-reversible rutile (Nb,Ti)O4 towards high-temperature carbon dioxide electrolysis. Sci Rep 4:5156.  https://doi.org/10.1038/srep05156 CrossRefGoogle Scholar
  79. Wu J, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) Electrochemical reduction of carbon dioxide I. effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):353–359.  https://doi.org/10.1149/2.049207jes CrossRefGoogle Scholar
  80. Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721.  https://doi.org/10.1016/j.carbon.2006.11.028 CrossRefGoogle Scholar
  81. Xie S, Wang Y, Zhang Q, Fan W, Deng W, Wang Y (2013) Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chem Commun 49:2451–2453.  https://doi.org/10.1039/c3cc00107e CrossRefGoogle Scholar
  82. Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5(4):1348–1354.  https://doi.org/10.1021/am302631b CrossRefGoogle Scholar
  83. Xu QYJ, Zhang Z, Zhang J, Liu G (2015) Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem Commun 51(37):7950–7953.  https://doi.org/10.1039/C5CC01087J CrossRefGoogle Scholar
  84. Xudong C, Peimei D, Zheng FH, Yanzhao Z, Yi C, Xiaoxiao N, Xiwen Z (2017) Green synthesis of plasmonic ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J CO2 Util 20:200–207.  https://doi.org/10.1016/j.jcou.2017.04.009 CrossRefGoogle Scholar
  85. Yan S, Wang J, Gao H, Wang N, Yu H, Li Z, Zhou Y, Zou Z (2013) Zinc gallogermanate solid solution: a novel photocatalyst for efficiently converting CO2 into solar fuels. Adv Funct Mater 22:1839–1845.  https://doi.org/10.1002/adfm.201202484 CrossRefGoogle Scholar
  86. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842.  https://doi.org/10.1021/ja5044787 CrossRefGoogle Scholar
  87. Yu L, Li G, Zhang X, Ba X, Shi G, Li Y, Wong PK, Yu JC, Yu Y (2016) Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal 6:6444–6454.  https://doi.org/10.1021/acscatal.6b01455 CrossRefGoogle Scholar
  88. Zhang Q, Han W, Hong Y, Yu J (2009) Photo catalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340.  https://doi.org/10.1016/j.cattod.2009.07.081 CrossRefGoogle Scholar
  89. Zhang N, Ouyang S, Kako T, Ye J (2012) Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. Chem Commun 48:1269–1271.  https://doi.org/10.1039/C2CC16900B CrossRefGoogle Scholar
  90. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737.  https://doi.org/10.1021/ja4113885 CrossRefGoogle Scholar
  91. Zhang L, Zhao ZJ, Gong J (2017) Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed 56(38):11326–11353.  https://doi.org/10.1002/anie.201612214 CrossRefGoogle Scholar
  92. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275.  https://doi.org/10.1002/advs.201700275 CrossRefGoogle Scholar
  93. Zheng Y, Lin L, Ye X, Guo F, Wang X (2014) Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed 53:11926–11930.  https://doi.org/10.1002/anie.201407319 CrossRefGoogle Scholar
  94. Zhou Y, Tian Z, Zhao Z, Liu Q, Kou J, Chen X, Gao J, Yan S, Zou Z (2011) High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces 3:3594–3601.  https://doi.org/10.1021/am2008147 CrossRefGoogle Scholar
  95. Zhou H, Zhang L, Zhang D, Chen S, Coxon PR, He X, Coto M, Kim HK, Xi K, Ding S (2016) A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Sci Rep 6:37752.  https://doi.org/10.1038/srep37752 CrossRefGoogle Scholar
  96. Zhu W, Michalsky R, Metin O, Lv H, Guo S, Wright CJ, Sun X, Peterson AA, Sun S (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135(45):16833–16836.  https://doi.org/10.1021/ja409445p CrossRefGoogle Scholar
  97. Zhuo X, Leia Z, Chia-Chien K, Xiaoxiang C, Bengen G, Yongchun Z, Junying Z, Chuguang Z, WubaState JCS (2017) Selective photo catalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: the interaction between Pt and Cu2O CO catalysts. Appl Catal B Environ 202:695–703.  https://doi.org/10.1016/j.apcatb.2016.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Harisekhar Mitta
    • 1
    • 2
    Email author
  • Putrakumar Balla
    • 1
    • 2
  • Nagaraju Nekkala
    • 2
  • Krishna Murthy Bhaskara
    • 3
  • Rajender Boddula
    • 4
  • Vijyakumar Kannekanti
    • 5
  • Ramachandra Rao Kokkerapati
    • 6
  1. 1.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  2. 2.Catalysis DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Department of PhysicsSVM Degree CollegeGadwal, TelanganaIndia
  4. 4.CAS-Key Laboratory of Nano-System and Hierarchical FabricationNational Centre for Nanoscience and TechnologyBeijingChina
  5. 5.College of Chemistry, Key Laboratory Physics and Technology of Ministry of EducationSichuan UniversityChengduChina
  6. 6.Crystal Growth and Nano-Science Research Center, Department of PhysicsGovernment Autonomous CollegeRajamahendravaramIndia

Personalised recommendations