Advertisement

Biomass-Derived Nanomaterials

  • Sebastian Raja
  • Luiz H. C. Mattoso
  • Francys K. V. Moreira
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)

Abstract

The arising of global energy crisis and tremendous risk of climate change has drastically endangered the survival and development of human society, which certainly demand for modern technologies that require high-performance materials with superior properties. In this context, nanotechnology has emerged as a powerful tool for the scientific community to the design and development of engineered materials. In particular, nanomaterials derived from biomass (plants or plant-based) resources are gaining much attention by governments, industries, and academia owing to their low-cost, environmental compatibility, and replacement capability for petroleum-derived products for energy and environmental applications. Meanwhile, it is desirable that the development of novel materials from the natural resources that meet our daily needs and at the same time environmental-friendly in nature. This chapter provides a comprehensive understanding for obtaining renewable nanomaterials from natural biomass precursors for energy and environmental applications. Three different nanomaterials (i) cellulose nanostructures, (ii) starch nanocrystals (SNC), and (iii) carbon nanostructures along with their recent advancement in energy and environmental applications are figured out.

Keywords

Nanostructures Renewable Biomass Nanocellulose Starch Carbon nanostructures CNTs C-dots Silica NPs Energy harvesting Energy storage Environment 

Notes

Acknowledgments

The authors thank Embrapa, FAPESP (Proc. No. 2015/00094-0; Proc. No. 2017/22017-3), MCTI/SISNANO, REDEAGRONANO, DEMa/UFSCar, and CNPq for the financial support.

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278.  https://doi.org/10.1021/bm700624p CrossRefGoogle Scholar
  2. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal, and mechanical properties. Compos Sci Technol 68(2):557–565.  https://doi.org/10.1016/j.composcitech.2007.05.044 CrossRefGoogle Scholar
  3. Amini AS, Razavi SMA (2016) A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocoll 57:132–138.  https://doi.org/10.1016/j.foodhyd.2016.01.022 CrossRefGoogle Scholar
  4. Andrade-Mahecha MM, Pelissari FM, Tapia-Blácido DR, Menegalli FC (2015) Achira as a source of biodegradable materials: isolation and characterization of nanofibers. Carbohydr Polym 123:406–415.  https://doi.org/10.1016/j.carbpol.2015.01.027 CrossRefGoogle Scholar
  5. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5(4):1545–1551.  https://doi.org/10.1021/bm049914u CrossRefGoogle Scholar
  6. Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38(22):9161–9170.  https://doi.org/10.1021/ma0512399 CrossRefGoogle Scholar
  7. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7(2):531–539.  https://doi.org/10.1021/bm050797s CrossRefGoogle Scholar
  8. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1):275–281.  https://doi.org/10.1016/j.ceramint.2014.08.069 CrossRefGoogle Scholar
  9. Balat M, Ayar G (2005) Biomass energy in the world, use of biomass and potential trends. Energy Sources 27(10):931–940.  https://doi.org/10.1080/00908310490449045 CrossRefGoogle Scholar
  10. Barr MC, Rowehl JA, Lunt RR, Xu J, Wang A, Boyce CM, Im SC, Bulovic V, Gleason KK (2017) Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 23(31):3499.  https://doi.org/10.1002/adma.201101263 CrossRefGoogle Scholar
  11. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422.  https://doi.org/10.3144/expresspolymlett.2008.50 CrossRefGoogle Scholar
  12. Bose S, Ganayee MA, Mondal B, Baidya A, Chennu S, Mohanty JS, Pradeep T (2018) Synthesis of silicon nanoparticles from rice husk and their use as sustainable fluorophores for white light emission. ACS Sustain Chem Eng 6(5):6203–6210.  https://doi.org/10.1021/acssuschemeng.7b04911 CrossRefGoogle Scholar
  13. Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M (2015) Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem Int Ed 54(15):4463–4468.  https://doi.org/10.1002/anie.201409290 CrossRefGoogle Scholar
  14. Cai C, Wei B, Jin Z, Tian Y (2017) Facile method for fluorescent labeling of starch nanocrystal. ACS Sustain Chem Eng 5(5):3751–3761.  https://doi.org/10.1021/acssuschemeng.6b02157 CrossRefGoogle Scholar
  15. Chen H (2014). Biotechnology of lignocelluloses: theory and practice.  https://doi.org/10.1007/978-94-007-6898-7_2, © Chemical Industry Press, BeijingCrossRefGoogle Scholar
  16. Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry. Polym Chem 6(24):4385–4395.  https://doi.org/10.1039/C5PY00367A CrossRefGoogle Scholar
  17. Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Nanocellulose, a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47(8):2837–2872.  https://doi.org/10.1039/c7cs00790f CrossRefGoogle Scholar
  18. Condés MC, Anón MC, Mauri AN, Dufresne A (2015) Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocoll 47:146–157.  https://doi.org/10.1016/j.foodhyd.2015.01.026 CrossRefGoogle Scholar
  19. Condés MC, Anón MC, Mauri AN, Dufresne A, Mauri AN (2018) Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocolloids 74:159–167.  https://doi.org/10.1016/j.foodhyd.2017.07.013 CrossRefGoogle Scholar
  20. Correá AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):595–606.  https://doi.org/10.1007/s10570-010-9453-3 CrossRefGoogle Scholar
  21. Costa SV, Pingel P, Janietz S, Nogueira AF (2016) Inverted organic solar cells using nanocellulose as substrate. J Appl Polym Sci 133(28):43679.  https://doi.org/10.1002/app.43679 CrossRefGoogle Scholar
  22. Dai L, Li C, Zhang J, Cheng F (2018) Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydr Polym 180:122–127.  https://doi.org/10.1016/j.carbpol.2017.10.015 CrossRefGoogle Scholar
  23. Desai SK, Bera S, Singh M, Mondal D (2017) Polyurethane-functionalized starch nanoparticles for the purification of biodiesel. Inc J Appl Polym Sci 134(7):44463.  https://doi.org/10.1002/APP.44463 CrossRefGoogle Scholar
  24. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327–2346.  https://doi.org/10.1021/bm500524s CrossRefGoogle Scholar
  25. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47(6):2065–2129.  https://doi.org/10.1039/c7cs00505a CrossRefGoogle Scholar
  26. Dubrovina L, Naboka O, Ogenko V, Gatenholm P, Enoksson P (2014) One-pot synthesis of carbon nanotubes from renewable resource: cellulose acetate. J Mater Sci 49(3):1144–1149.  https://doi.org/10.1007/s10853-013-7793-8 CrossRefGoogle Scholar
  27. Dufresne A, Cavaillé JY, Helbert W (1996) New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29(23):7624–7626.  https://doi.org/10.1021/ma9602738 CrossRefGoogle Scholar
  28. Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of Nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560.  https://doi.org/10.1021/bm5013458 CrossRefGoogle Scholar
  29. Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S, Chen G, Li T, Munday J, Huang J, Hu L (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765.  https://doi.org/10.1021/nl404101 CrossRefGoogle Scholar
  30. France KJD, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing Nanocellulose. Chem Mater 29(11):4609–4631.  https://doi.org/10.1021/acs.chemmater.7b00531 CrossRefGoogle Scholar
  31. Gaddam RR, Jiang E, Amiralian N, Annamalai PK, Martin DJ, Kumar NA, Zhao XS (2017) Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. Sustain Energy Fuels 1(5):1090–1097.  https://doi.org/10.1039/c7se00169j CrossRefGoogle Scholar
  32. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116(3):1637–1669.  https://doi.org/10.1021/acs.chemrev.5b00264 CrossRefGoogle Scholar
  33. Gao Z, Zhang Y, Song N, Li X (2017a) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5(2):69–88.  https://doi.org/10.1080/21663831.2016.1250834 CrossRefGoogle Scholar
  34. Gao J, Zhu M, Huang H, Liu Y, Kang Z (2017b) Advances, challenges and promises of carbon dots. Inorg Chem Front 4(12):1963–1986.  https://doi.org/10.1039/C7QI00614D CrossRefGoogle Scholar
  35. Golmohammadi H, Morales-Narváz E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29(13):5426–5446.  https://doi.org/10.1021/acs.chemmater.7b01170 CrossRefGoogle Scholar
  36. Ha D, Fang Z, Hu L, Munday JN (2014) Paper-based anti-refection coatings for photovoltaics. Adv Energy Mater 4(9):1301804.  https://doi.org/10.1002/aenm.201301804 CrossRefGoogle Scholar
  37. Haaj SB, Thielemans W, Magnin A, Boufi S (2016) Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr Polym 143:310–317.  https://doi.org/10.1016/j.carbpol.2016.01.061 CrossRefGoogle Scholar
  38. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542.  https://doi.org/10.1039/c3cs60204d CrossRefGoogle Scholar
  39. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: self-assembly, and application. Chem Rev 110(6):3479–3500.  https://doi.org/10.1021/cr900339w CrossRefGoogle Scholar
  40. Hao Y, Chen Y, Li Q, Gao Q (2018) Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr Polym 184:171–177.  https://doi.org/10.1016/j.carbpol.2017.12.042 CrossRefGoogle Scholar
  41. Herou S, Schlee P, Jorge AB, Titirici M (2018) Biomass-derived electrodes for flexible supercapacitors. Curr Opin Green Sust Chem 9:18–24.  https://doi.org/10.1016/j.cogsc.2017.10.005 CrossRefGoogle Scholar
  42. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8(27):13131–13154.  https://doi.org/10.1039/c6nr03054h CrossRefGoogle Scholar
  43. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518.  https://doi.org/10.1039/C2EE23635D CrossRefGoogle Scholar
  44. Islam MS, Chen L, Sisler J, Tam KC (2018) Cellulose nanocrystal (CNC)-inorganic hybrid systems: synthesis, properties and applications. J Mater Chem B 6(6):864–883.  https://doi.org/10.1039/C7TB03016A CrossRefGoogle Scholar
  45. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85.  https://doi.org/10.1039/C0NR00583E CrossRefGoogle Scholar
  46. Jang WD, Hwang JH, Kim HU, Ryu JY, Lee SY (2017) Bacterial cellulose as an example product for sustainable production and consumption. Microb Biotechnol 10(5):1181–1185.  https://doi.org/10.1111/1751-7915.12744 CrossRefGoogle Scholar
  47. Jiang Q, Kacia C, Soundappan T, Liu K, Tadepalli S, Biswas P, Singamaneni S (2017) An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. J Mat Chem A 5(27):13976–13982.  https://doi.org/10.1039/c7ta03824k CrossRefGoogle Scholar
  48. Julkapli NM, Bagheri S (2017) Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Adv Technol 28(12):1583–1594.  https://doi.org/10.1002/pat.4074 CrossRefGoogle Scholar
  49. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866.  https://doi.org/10.1007/s10570-012-9684-6 CrossRefGoogle Scholar
  50. Khan A, Wen Y, Huq T, Ni Y (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66(1):8–19.  https://doi.org/10.1021/acs.jafc.7b04204 CrossRefGoogle Scholar
  51. Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68:146–158.  https://doi.org/10.1016/j.carbpol.2006.07.021 CrossRefGoogle Scholar
  52. Kumar SV, George J, Sajeevkumar VA (2018) PVA based ternary nanocomposites with enhanced properties prepared by using a combination of rice starch nanocrystals and silver nanoparticles. J Polym Environ 26(7):3117–3127.  https://doi.org/10.1007/s10924-018-1200-0 CrossRefGoogle Scholar
  53. Lai F, Miao Y-E, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244.  https://doi.org/10.1002/small.201600412 CrossRefGoogle Scholar
  54. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29.  https://doi.org/10.1038/nchem.2085 CrossRefGoogle Scholar
  55. Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L (2015a) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354.  https://doi.org/10.1016/j.nanoen.2015.02.015 CrossRefGoogle Scholar
  56. Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q (2015b) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121:155–162.  https://doi.org/10.1016/j.carbpol.2014.12.040 CrossRefGoogle Scholar
  57. Li N, Li X, Chuang Y, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Adv 6(89):86744–86751.  https://doi.org/10.1039/c6ra19529f CrossRefGoogle Scholar
  58. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381.  https://doi.org/10.1039/C4CS00269E CrossRefGoogle Scholar
  59. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10):5384–5393.  https://doi.org/10.1039/C3NR06761K CrossRefGoogle Scholar
  60. Liu C, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy. ACS Nano 4(10):5517–5526.  https://doi.org/10.1021/nn102420c CrossRefGoogle Scholar
  61. Liu N, Huo K, McDowell MT, Zhao J, Cui Y (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep 3:1919.  https://doi.org/10.1038/srep01919 CrossRefGoogle Scholar
  62. Ma L, Liu R, Niu H, Xing L, Liu L, Huang Y (2016) Flexible and freestanding supercapacitor electrodes based on nitrogen-doped carbon networks/graphene/bacterial cellulose with ultrahigh areal capacitance. ACS App Mater Interfaces 8(49):33608–33618.  https://doi.org/10.1021/acsami.6b11034 CrossRefGoogle Scholar
  63. Mao ND, Lee SY, Shin HJ, Kwac LK, Ko SC, Kim HG, Jeong H (2018) Biomass fly ash as an alternative approach for synthesis of amorphous silica nanoparticles with high surface area. J Nanosci Nanotechnol 18(5):3329–3334.  https://doi.org/10.1166/jnn.2018.14548 CrossRefGoogle Scholar
  64. Megiatto Jr JD (2006) Fibras de Sisal: Estudo de propriedades e modificações químicas visando a aplicação em compósitos de matriz fenólica. PhD thesis, Federal University of São Carlos, BrazilGoogle Scholar
  65. Menon MP, Selvakumar R, Kumar PS, Ramakrishna S (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental applications. RSC Adv 7(68):42750–42773.  https://doi.org/10.1039/C7RA06713E CrossRefGoogle Scholar
  66. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18(1):20–52.  https://doi.org/10.1039/C5GC01403D CrossRefGoogle Scholar
  67. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5(3):623–658.  https://doi.org/10.1039/C7EN01029J CrossRefGoogle Scholar
  68. Moon IRJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994.  https://doi.org/10.1039/C0CS00108B CrossRefGoogle Scholar
  69. Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20(4):1186–1197.  https://doi.org/10.1016/j.jiec.2013.09.001 CrossRefGoogle Scholar
  70. Mukurumbira A, Mariano M, Dufresne A, Mellem JJ, Amonsou EO (2017) Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals. Int J Biol Macromol 102:241–247.  https://doi.org/10.1016/j.ijbiomac.2017.04.030 CrossRefGoogle Scholar
  71. Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238.  https://doi.org/10.1016/j.carbpol.2014.02.075 CrossRefGoogle Scholar
  72. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25.  https://doi.org/10.1016/j.indcrop.2016.02.016 CrossRefGoogle Scholar
  73. Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanopaper for foldable solar cells. Sci Rep 5:689.  https://doi.org/10.1038/srep17254 CrossRefGoogle Scholar
  74. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, Souza CF, Martin AA, Silva R, Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106.  https://doi.org/10.1016/j.ijbiomac.2017.05.171 CrossRefGoogle Scholar
  75. Putaux J-L, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5):1198–1202.  https://doi.org/10.1021/bm0340422 CrossRefGoogle Scholar
  76. Qi W, Lv R, Na B, Liu H, He Y, Yu N (2018) Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain Chem Eng 6(4):4739–4745.  https://doi.org/10.1021/acssuschemeng.7b03858 CrossRefGoogle Scholar
  77. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6(3):2807–2828.  https://doi.org/10.1021/acssuschemeng.7b03437 CrossRefGoogle Scholar
  78. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67:147–153.  https://doi.org/10.1016/j.ijbiomac.2014.03.013 CrossRefGoogle Scholar
  79. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583–1598.  https://doi.org/10.1021/acs.langmuir.6b03765 CrossRefGoogle Scholar
  80. Ren L, Jiang M, Wang L, Zhou J, Tong J (2012) A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate. Carbohydr Polym 87:1874–1876CrossRefGoogle Scholar
  81. Ren L, Wang O, Yan X, Tong J, Zhou J, Su X (2016) Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Res Int 87:180–188.  https://doi.org/10.1016/j.foodres.2016.07.007 CrossRefGoogle Scholar
  82. Ren L, Fu Y, Chang Y, Jiang M, Tong J, Zhou J (2017) Performance improvement of starch films reinforced with starch nanocrystals (SNCs) modified by cross-linking. Starch/Stärke 69(1–2):1600025–1600035.  https://doi.org/10.1002/star.201600025 CrossRefGoogle Scholar
  83. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An Ultrastrong Nanofibrillar biomaterial: the strength of single cellulose Nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253.  https://doi.org/10.1021/bm301674e CrossRefGoogle Scholar
  84. Scaffaro R, Botta L, Lopresti F, Maio A, Sutera F (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24(2):447–478.  https://doi.org/10.1007/s10570-016-1143-3 CrossRefGoogle Scholar
  85. Shaghaleh H, Xu X, Wang S (2018) Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv 8(2):825–842.  https://doi.org/10.1039/C7RA11157F CrossRefGoogle Scholar
  86. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765.  https://doi.org/10.3390/polym2040728 CrossRefGoogle Scholar
  87. Song S, Wang C, Pan Z, Wang X (2008) Preparation and characterization of amphiphilic starch nanocrystals. J Appl Polym Sci 107(1):418–422.  https://doi.org/10.1002/app.27076 CrossRefGoogle Scholar
  88. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409.  https://doi.org/10.1016/j.jcis.2017.01.077 CrossRefGoogle Scholar
  89. Teixeira EM, Correá AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606.  https://doi.org/10.1007/s10570-010-9403-0 CrossRefGoogle Scholar
  90. Theng D, Arbat G, Delgado-Aguilar M, Vilaseca F, Ngo B, Mutjé P (2015) All ligno-cellulosic fiberboard from biomass and cellulose nanofibers. Ind Crops Prod 76:166–173.  https://doi.org/10.1016/j.indcrop.2015.06.046 CrossRefGoogle Scholar
  91. Thygesen A, Oddershede J, Lilholt H, Thompsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576.  https://doi.org/10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  92. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88.  https://doi.org/10.1016/j.carbpol.2012.02.052 CrossRefGoogle Scholar
  93. Turbak A, Snyder, FW, Sandberg KR (1983) Microfibrillated Cellulose. US 4374702 AGoogle Scholar
  94. Viguie J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7(11):1206–1216.  https://doi.org/10.1002/mabi.200700136 CrossRefGoogle Scholar
  95. Wan Y, Yang Z, Xiong G, Luo H (2015) A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J Mater Chem A 3(30):15386–15393A.  https://doi.org/10.1039/C5TA03688G CrossRefGoogle Scholar
  96. Wang L, Schutz C, Salazar-Alvarez G, Titirici M-M (2014a) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4(34):17549–17554.  https://doi.org/10.1039/C3RA47853J CrossRefGoogle Scholar
  97. Wang C, Pan Z, Wu M, Zhao P (2014b) Effect of reaction conditions on grafting ratio and properties of starch nanocrystals-g-polystyrene. J Appl Polym Sci 131(15):40571.  https://doi.org/10.1002/APP.40571 CrossRefGoogle Scholar
  98. Wang Z, Carisson DO, Tammela P, Hua K, Zhang P, Nyholm L, Stromme M (2015a) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9(7):7563–7557.  https://doi.org/10.1021/acsnano.5b02846 CrossRefGoogle Scholar
  99. Wang W, Sun Y, Liu B, Wang S, Cao M (2015b) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65.  https://doi.org/10.1016/j.carbon.2015.04.041 CrossRefGoogle Scholar
  100. Wang Z, Xu C, Tammela P, Huo J, Stromme M, Edstrom K, Gustafsson T, Nyholm L (2015c) Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J Mater Chem A 3(27):14109–14115.  https://doi.org/10.1039/C5TA02136G CrossRefGoogle Scholar
  101. Wang X, Yao C, Wang F, Li Z (2017a) Cellulose-based nanomaterials for energy applications. Small 13(42):1–19.  https://doi.org/10.1002/smll.201702240 CrossRefGoogle Scholar
  102. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Haung W (2017b) Latest advances in supercapacitors: from new electrode materials to novel device design. Chem Soc Rev 46(22):6816–6854.  https://doi.org/10.1039/C7CS00205J CrossRefGoogle Scholar
  103. Wang G, Deng Y, Yu J, Zheng L, Du L, Song H, Liao S (2017c) From chlorella to nestlike framework constructed with doped carbon nanotubes: a biomass-derived, high-performance, bifunctional oxygen reduction/evolution catalyst. ACS Appl Mater Interfaces 9(37):32168–32178.  https://doi.org/10.1021/acsami.7b10668 CrossRefGoogle Scholar
  104. Wang Z, Zeng S, Li Y, Wang W, Zhang Z, Zeng H, Wang W, Sun L (2017d) Luminescence mechanism of carbon-incorporated silica nanoparticles derived from rice husk biomass. Ind Eng Chem Res 56(20):5906–5912.  https://doi.org/10.1021/acs.iecr.7b00700 CrossRefGoogle Scholar
  105. Wei B, Hu X, Li H, Wu C, Xu X, Jin Z, Tian Y (2014) Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium. Food Hydrocoll 36:369–373.  https://doi.org/10.1016/j.foodhyd.2013.08.015 CrossRefGoogle Scholar
  106. Wei B, Sun B, Zhang B, Long J, Chen L, Tian Y (2016) Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydr Polym 136:1203–1208.  https://doi.org/10.1016/j.carbpol.2015.10.025 CrossRefGoogle Scholar
  107. Widiarto S, Yuwono SD, Rochliadi A, Arcana IM (2017) Preparation and characterization of cellulose and Nanocellulose from agro-industrial waste - cassava Peel. IOP Conf Ser Mater Sci Eng 176:012052.  https://doi.org/10.1088/1757-899X/176/1/012052 CrossRefGoogle Scholar
  108. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737.  https://doi.org/10.1021/ja040082h CrossRefGoogle Scholar
  109. Xu M, Huang Q, Sun R, Wang X (2016) Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass. RSC Adv 6(91):88674–88682.  https://doi.org/10.1039/C6RA18725K CrossRefGoogle Scholar
  110. Xu C, Chen C, Wu D (2018) The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties. Carbohydr Polym 182:115–122.  https://doi.org/10.1016/j.carbpol.2017.11.001 CrossRefGoogle Scholar
  111. Xue Y, Mou Z, Xiao M (2017) Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 9(39):14758–14781.  https://doi.org/10.1039/C7NR04994C CrossRefGoogle Scholar
  112. Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(e-caprolactone). Macromol Mater Eng 293(9):763–770.  https://doi.org/10.1002/mame.200800134 CrossRefGoogle Scholar
  113. Zhang Y, Wang Y, Cheng T, Lai W, Pang H, Huang W (2015) Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev 44(15):5181–5199.  https://doi.org/10.1039/C5CS00174A CrossRefGoogle Scholar
  114. Zhang F, Tang Y, Yang Y, Zhang X (2016) In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim Acta 211:404–410.  https://doi.org/10.1016/j.electaacta.2016.05.181 CrossRefGoogle Scholar
  115. Zhang Y, Lu L, Zhang S, Lv Z, Yang D, Liu J, Chen Y, Tian X, Jin H, Song W (2018) Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. J Mater Chem A 6(14):5740–5745.  https://doi.org/10.1039/c7ta11258k CrossRefGoogle Scholar
  116. Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7(5):3263–3271.  https://doi.org/10.1021/am.507999s CrossRefGoogle Scholar
  117. Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem 4(10):1344–1387.  https://doi.org/10.1002/cssc.201100048 CrossRefGoogle Scholar
  118. Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536.  https://doi.org/10.1038/srep01536 CrossRefGoogle Scholar
  119. Zhou J, Tong J, Su X, Ren L (2016) Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. Int J Biol Macromol 91:186–1193.  https://doi.org/10.1016/j.ijbiomac.2016.06.082 CrossRefGoogle Scholar
  120. Zhu J, Jia J, Kwong FL, Ng DHL, Tjong SC (2012) Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenergy 36:12–19.  https://doi.org/10.1016/j.biombioe.2011.08.023 CrossRefGoogle Scholar
  121. Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287.  https://doi.org/10.1039/C3EE43024C CrossRefGoogle Scholar
  122. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374.  https://doi.org/10.1021/acs.chemrev.6b00225 CrossRefGoogle Scholar
  123. Zhu H, Shen F, Luo W, Zhu S, Zhao M, Natarajan B, Dai J, Zhou L, Ji X, Yassar RS, Li T, Hu L (2017a) Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 33:37–44.  https://doi.org/10.1016/nanoen.2017.01.021 CrossRefGoogle Scholar
  124. Zhu G, Dufresne A, Lin N (2017b) Humidity-sensitive and conductive nanopapers from plant-derived proteins with a synergistic effect of platelet-like starch nanocrystals and sheet-like graphene. ACS Sustain Chem Eng 5(10):9431–9440.  https://doi.org/10.1021/acssuschemeng.7b02577 CrossRefGoogle Scholar
  125. Zuo L, Fan W, Zhang Y, Huang Y, Gao W, Liu T (2017) Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Nanoscale 9(13):4445–4455.  https://doi.org/10.1039/C7NR00130D CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sebastian Raja
    • 1
  • Luiz H. C. Mattoso
    • 1
  • Francys K. V. Moreira
    • 2
  1. 1.National Nanotechnology Laboratory for Agribusiness, Embrapa InstrumentaçãoSão CarlosBrazil
  2. 2.Department of Materials Engineering – DEMaFederal University of São Carlos – UFSCarSão CarlosBrazil

Personalised recommendations