Advertisement

Exploring the Context of Lexical Functions

  • Olga KolesnikovaEmail author
  • Alexander Gelbukh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11289)

Abstract

We explore the context of verb-noun collocations using a corpus of the Excelsior newspaper issues in Spanish. Our purpose is to understand to what extent the context is able to distinguish the semantics of collocations represented by lexical functions of the Meaning-Text Theory. For experiments, four lexical functions were chosen: Oper1, Real1, CausFunc0, and CausFunc1. We inspected different parts of the eight-word window context: the left context, the right context, and both the left and right context. These contexts were retrieved from the original corpus as well as from the same corpus after stopwords deletion. For the vector representation of the context, word counts and tf-idf of words were used. To estimate the ability of the context to predict lexical functions, we used various machine-learning techniques. The best F-measure of 0.65 was achieved for predicting Real1 by Gaussian Naïve Bayes using the left context without stopwords and word counts as features in vectors.

Keywords

Natural language processing Lexical functions Verb-noun collocations Context representation 

Notes

Acknowledgements

The research was done under partial support of Mexican Government: SNI, BEIFI-IPN, and SIP-IPN grants 20182119 and 20181792. The work was done when A. Gelbukh was visiting the Research Institute for Information and Language Processing, University of Wolverhampton, on a grant from the Sabbatical Year Program of the CONACYT, Mexico.

References

  1. 1.
    Gelbukh, A., Kolesnikova, O.: Supervised learning for semantic classification of Spanish collocations. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 362–371. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15992-3_38CrossRefGoogle Scholar
  2. 2.
    Gerdes, K., Reuther, T., Wanner, L. (eds.): MTT 2007: Meaning-Text Theory 2007: Proceedings of the 3rd International Conference on Meaning-Text Theory, Klagenfurt, Austria (2007)Google Scholar
  3. 3.
    Gómez-Adorno, H., Posadas-Duran, J.-P., Ríos-Toledo, G., Sidorov, G., Sierra, G.: Stylometry-based approach for detecting writing style changes in literary texts. Computación y Sistemas 22(1), 47–53 (2018)CrossRefGoogle Scholar
  4. 4.
    Kahane, S.: The meaning-text theory. Dependency and valency. In: An International Handbook of Contemporary Research, vol. 1, pp. 546–570. Walter de Gruyter, Berlin (2003)Google Scholar
  5. 5.
    Machova, S.: Meaning-text theory. Comput. Linguist. 18(1), 108–111 (1992)Google Scholar
  6. 6.
    Majumder, G., Pakray, P., Gelbukh, A., Pinto, D.: Semantic textual similarity methods, tools, and applications: a survey. Computación y Sistemas 20(4), 647–665 (2016)CrossRefGoogle Scholar
  7. 7.
    Mel’čuk, I.A.: Lexical functions: a tool for the description of lexical relations in a lexicon. In: Wanner, L. (ed.) Lexical Functions in Lexicography and Natural Language Processing, pp. 37–102. Benjamins Academic Publishers, Amsterdam (1996)Google Scholar
  8. 8.
    Mille, S., Wanner, L., Burga, A.: Treebank annotation in the light of the Meaning-Text Theory. Linguist. Issues Lang. Technol. 7(16), 1–12 (2012)Google Scholar
  9. 9.
    Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the Workshop on Human Language Technology, pp. 303–308. Association for Computational Linguistics (1993)Google Scholar
  10. 10.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Polguère, A.: Towards a theoretically-motivated general public dictionary of semantic derivations and collocations for French. In: Proceedings of EURALEX 2000, Stuttgart, Germany (2000)Google Scholar
  12. 12.
    Ramos, A.M., Wanner, L., Veiga, N.V., Vincze, O., Suárez, E.M., González, S.P.: Tagging collocations for learners. In: Granger, S., Paquot, M. (eds.) Proceedings of ELex 2009, pp. 375–380. Presses universitaires de Louvain, Louvain-la-Neuve (2010)Google Scholar
  13. 13.
    Sheremetyeva, S., Babina, O.: Meaning-Text Theory for textual input analysis and proofing in a generation system. In: Apresjan, Y., Iomdin, L. (eds.) Proceedings of the Second International Conference on the Meaning-Text Model, pp. 458–466. Slavic Culture Languages Publishing House, Moscow (2005)Google Scholar
  14. 14.
    Sidorov, S., Gelbukh, A., Gómez-Adorno, H., Pinto, D.: Soft similarity and soft cosine measure: similarity of features in vector space model. Computación y Sistemas 18(3), 491–504 (2014)CrossRefGoogle Scholar
  15. 15.
    Smedt, T.D., Daelemans, W.: Pattern for Python. J. Mach. Learn. Res. 13, 2063–2067 (2012)zbMATHGoogle Scholar
  16. 16.
    The University of Waikato Computer Science Department Machine Learning Group, WEKA download. http://www.cs.waikato.ac.nz/~ml/weka/index_downloading.html
  17. 17.
    Tutin, A.: Annotating lexical functions in corpora: showing collocations in context. In: Apresjan, Y., Iomdin, L. (eds.) Proceedings of the Second International Conference on the Meaning-Text Model, pp. 498–510. Slavic Culture Languages Publishing House, Moscow (2017)Google Scholar
  18. 18.
    Wanner, L.: Towards automatic fine-grained classification of verb-noun collocations. Nat. Lang. Eng. 10(2), 95–143 (2004)CrossRefGoogle Scholar
  19. 19.
    Wanner, L.: Selected Lexical and Grammatical Issues in the Meaning-Text Theory. Honour of Igor Mel’cuk. Benjamins, Amsterdam/Philadelphia (2007)CrossRefGoogle Scholar
  20. 20.
    Wanner, L., Bohnet, B., Giereth, M.: What is beyond collocations? Insights from machine learning experiments. In: Proceedings of the 12th EURALEX International Congress, pp. 1071–1084, Turin, Italy (2006)Google Scholar
  21. 21.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Escuela Superior de Cómputo, Instituto Politécnico NacionalMexico CityMexico
  2. 2.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations