Advertisement

Finding Optimal Farming Practices to Increase Crop Yield Through Global-Best Harmony Search and Predictive Models, a Data-Driven Approach

  • Hugo Dorado
  • Sylvain Delerce
  • Daniel Jimenez
  • Carlos CobosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11289)

Abstract

Increasing crops’ yields to meet the world’s demand for food is one of the great challenges of these times. To achieve this, farmers must make the best decisions based on the resources available for them. In this paper, we propose the use of Global-best Harmony Search (GHS) to find the optimal farming practices and increase the yields according to the local climate and soil characteristics, following the principles of site-specific agriculture. We propose to build an aptitude function based on a random forest model trained on farms’ data combined with open data sources for climate and soil. The result is an optimizer that uses a data-driven approach and generates information on the optimized farming practices, allowing the farmer to harness the full potential of his land. The approach was tested on a case-study on maize in the state of Chiapas, Mexico, where the adoption of the practices suggested by our approach was estimated to increase average yield by 1.7 ton/ha, contributing to closing the yield gap. The proposal has the potential to be scaled to other locations, other response variables and other crops.

Keywords

Global-best harmony search Machine learning Open data Data-driven agronomy Optimization 

Notes

Acknowledgements

The research has been supported by International Center for Tropical Agriculture (CIAT) and is based on data shared by the MASAGRO project lead by the International Maize and Wheat Improvement Center (CIMMYT), we also acknowledge for the open data shared by INIFAP and INEGI. We are especially grateful to Colin McLachlan for suggestions relating to the text in English.

References

  1. 1.
    van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z.: Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2012)CrossRefGoogle Scholar
  2. 2.
    Zader, A.: Food and agriculture. In: Routledge Handbook of Environment and Society in Asia, p. 237 (2014)Google Scholar
  3. 3.
    Mase, A.S., Prokopy, L.S.: Unrealized potential: a review of perceptions and use of weather and climate information in agricultural decision making. Weather. Clim. Soc. 6(1), 47–61 (2014)CrossRefGoogle Scholar
  4. 4.
    Tilman, D., Balzer, C., Hill, J., Befort, B.L.: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108(50), 20260–20264 (2011)CrossRefGoogle Scholar
  5. 5.
    Foley, J.A., et al.: Solutions for a cultivated planet. Nature 478(7369), 337 (2011)CrossRefGoogle Scholar
  6. 6.
    Reid, W.V., Berkes, F., Wilbanks, T.J., Capistrano, D., et al.: Bridging Scales and Knowledge Systems: Concepts and Applications in Ecosystem Assessment. Island Press, Washington (2006)Google Scholar
  7. 7.
    Rasmussen, P.E., Goulding, K.W., Brown, J.R., Grace, P.R., Janzen, H.H., Körschens, M.: Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282(5390), 893–896 (1998)CrossRefGoogle Scholar
  8. 8.
    Samberg, L.H., Gerber, J.S., Ramankutty, N., Herrero, M., West, P.C.: Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 11(12), 1–12 (2016). http://iopscience.iop.org/article/10.1088/1748-9326/11/12/124010/metaCrossRefGoogle Scholar
  9. 9.
    De Janvry, A., Sadoulet, E., Suri, T.: Field experiments in developing country agriculture. In: Handbook of Economic Field Experiments, vol. 2, pp. 427–466. Elsevier, Amsterdam (2017)Google Scholar
  10. 10.
    Leeuwis, C.: Communication for Rural Innovation: Rethinking Agricultural Extension. Wiley, Hoboken (2013)Google Scholar
  11. 11.
    Cock, J., et al.: Crop management based on field observations: case studies in sugarcane and coffee. Agric. Syst. 104(9), 755–769 (2011)CrossRefGoogle Scholar
  12. 12.
    Jiménez, D., et al.: From observation to information: data-driven understanding of on farm yield variation. PLoS One 11(3), 1–20 (2016)Google Scholar
  13. 13.
    Jiménez, D., et al.: Interpretation of commercial production information: a case study of lulo (Solanum quitoense), an under-researched Andean fruit. Agric. Syst. 104(3), 258–270 (2011)CrossRefGoogle Scholar
  14. 14.
    Jiménez, D., et al.: Analysis of Andean blackberry (Rubus glaucus) production models obtained by means of artificial neural networks exploiting information collected by small-scale growers in Colombia and publicly available meteorological data. Comput. Electron. Agric. 69(2), 198–208 (2009)CrossRefGoogle Scholar
  15. 15.
    Delerce, S., et al.: Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE 11(8), e0161620 (2016)CrossRefGoogle Scholar
  16. 16.
    Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinform. 11, 1–11 (2008)Google Scholar
  17. 17.
    Yu, T., Davis, L., Baydar, C., Roy, R.: Evolutionary Computation in Practice. Studies in Computational Intelligence. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75771-9CrossRefzbMATHGoogle Scholar
  18. 18.
    Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer, Heidelberg (2005).  https://doi.org/10.1007/0-387-31909-3CrossRefzbMATHGoogle Scholar
  19. 19.
    Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-84996-129-5CrossRefzbMATHGoogle Scholar
  20. 20.
    Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 93–117. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-1-4614-6940-7_4CrossRefGoogle Scholar
  21. 21.
    Du, K.-L., Swamy, M.N.S.: Particle swarm optimization. In: Search and Optimization by Metaheuristics, pp. 153–173. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-41192-7CrossRefGoogle Scholar
  22. 22.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  23. 23.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  24. 24.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Omran, M.G., Mahdavi, M.: Global-best harmony search. Appl. Math. Comput. 198(2), 643–656 (2008)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  27. 27.
    Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O., et al.: Neural Network Design, vol. 20. Pws Pub, Boston (1996)Google Scholar
  28. 28.
    Breiman, L.: Statistical modeling: the two cultures. Stat. Sci. 16, 199–215 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8, 25 (2007)CrossRefGoogle Scholar
  31. 31.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45014-9_1CrossRefGoogle Scholar
  32. 32.
    Al-Jarrah, O.Y., Yoo, P.D., Muhaidatc, S., Karagiannidis, G.K., Tahaa, K.: Efficient machine learning for Big Data: a review. Big Data Res. 2(3), 87–93 (2015)CrossRefGoogle Scholar
  33. 33.
    Gao, K.-Z., Suganthan, P.N., Pan, Q.-K., Chua, T.J., Cai, T.X., Chong, C.-S.: Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 27(2), 363–374 (2016)CrossRefGoogle Scholar
  34. 34.
    Kong, X., Gao, L., Ouyang, H., Li, S.: A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst. Appl. 42(12), 5337–5355 (2015)CrossRefGoogle Scholar
  35. 35.
    Hoang, D.C., Yadav, P., Kumar, R., Panda, S.K.: Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Trans. Ind. Inform. 10(1), 774–783 (2014)CrossRefGoogle Scholar
  36. 36.
    Assad, A., Deep, K.: Applications of harmony search algorithm in data mining: a survey. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds.) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol. 437, pp. 863–874. Springer, Singapore (2016).  https://doi.org/10.1007/978-981-10-0451-3_77CrossRefGoogle Scholar
  37. 37.
    Kuhn, M., et al.: Caret: Classification and Regression Training (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hugo Dorado
    • 1
    • 2
  • Sylvain Delerce
    • 2
  • Daniel Jimenez
    • 2
  • Carlos Cobos
    • 1
    Email author
  1. 1.Information Technology Research Group (GTI)Universidad del CaucaPopayánColombia
  2. 2.International Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations