Advertisement

Artificial Neural Networks and Common Spatial Patterns for the Recognition of Motor Information from EEG Signals

  • Carlos Daniel Virgilio GonzalezEmail author
  • Juan Humberto Sossa Azuela
  • Javier M. Antelis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

This paper proposes the use of two models of neural networks (Multi Layer Perceptron and Dendrite Morphological Neural Network) for the recognition of voluntary movements from electroencephalographic (EEG) signals. The proposal consisted of three main stages: organization of EEG signals, feature extraction and execution of classification algorithms. The EEG signals were recorded from eighteen healthy subjects performing self-paced reaching movements. Three classification scenarios were evaluated in each participant: Relax versus Intention, Relax versus Execution and Intention versus Execution. The feature extraction stage was carried out by applying an algorithm known as Common Spatial Pattern, in addition to the statistical methods called Root Mean Square, Variance, Standard Deviation and Mean. The results showed that the models of neural networks provided decoding accuracies above chance level, whereby, it is able to detect a movement prior its execution. On the basis of these results, the neural networks are a powerful promising classification technique that can be used to enhance performance in the recognition of motor tasks for BCI systems based on electroencephalographic signals.

Keywords

Brain computer interface EEG signals Motor task Common Spatial Pattern Dendrite Morphological Neural Network Multilayer Perceptron 

Notes

Acknowledgements

We would like to express our sincere appreciation to the Instituto Politécnico Nacional and the Secretaria de Investigación y Posgrado for the economic support provided to carry out this research. This project was supported economically by SIP-IPN (numbers 20180730 and 20180943) and the National Council of Science and Technology of Mexico (CONACyT) (65 Frontiers of Science, numbers 268958 and PN2015-873).

References

  1. 1.
    Guger, C., Allison, B.Z., Edlinger, G. (eds.): Brain-Computer Interface Research. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36083-1CrossRefGoogle Scholar
  2. 2.
    Antelis, J.M., Gudiño-Mendoza, B., Falcón, L.E., Sanchez-Ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Signal Process. Control 44, 12–24 (2018).  https://doi.org/10.1016/j.bspc.2018.03.010CrossRefGoogle Scholar
  3. 3.
    Asensio Cubero, J., Gan, J.Q., Palaniappan, R.: Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing. Biomed. Signal Process. Control 8(6), 772–778 (2013).  https://doi.org/10.1016/j.bspc.2013.07.004CrossRefGoogle Scholar
  4. 4.
    Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003).  https://doi.org/10.1109/TNSRE.2003.814438MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belhadj, S.A., Benmoussat, N., Krachai, M.D.: CSP features extraction and FLDA classification of EEG-based motor imagery for brain-computer interaction. In: 2015 4th International Conference on Electrical Engineering, ICEE 2015, pp. 3–8 (2016).  https://doi.org/10.1109/INTEE.2015.7416697
  6. 6.
    Combrisson, E., Jerbi, K.: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).  https://doi.org/10.1016/j.jneumeth.2015.01.010CrossRefGoogle Scholar
  7. 7.
    Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000).  https://doi.org/10.1109/86.847808CrossRefGoogle Scholar
  8. 8.
    Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for. Evaluation 3408, 345–359 (2005).  https://doi.org/10.1007/978-3-540-31865-125
  9. 9.
    Gudiño-Mendoza, B., Sossa, H., Sanchez-Ante, G., Antelis, J.M.: Classification of motor states from brain rhythms using lattice neural networks. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ayala-Ramírez, V., Olvera-López, J.A., Jiang, X. (eds.) MCPR 2016. LNCS, vol. 9703, pp. 303–312. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39393-3_30CrossRefGoogle Scholar
  10. 10.
    Han, R.X., Wei, Q.G.: Feature extraction by combining wavelet packet transform and common spatial pattern in brain-computer interfaces. Appl. Mech. Mater. 239, 974–979 (2013).  https://doi.org/10.4028/www.scientific.net/AMM.239-240.974CrossRefGoogle Scholar
  11. 11.
    Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S.: Classification of EEG signals using different feature extraction techniques for mental-taskBCI. In: 2007 International Conference on Computer Engineering Systems, pp. 220–226 (2007).  https://doi.org/10.1109/ICCES.2007.4447052
  12. 12.
    Iturrate, I., Antelis, J.M., Andrea, K., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)CrossRefGoogle Scholar
  13. 13.
    Katona, J., Kovari, A.: EEG-based computer control interface for brain-machine interaction. Int. J. Online Eng. 11(6), 43–48 (2015).  https://doi.org/10.3991/ijoe.v11i6.5119CrossRefGoogle Scholar
  14. 14.
    Li, M., Li, W., Zhao, J., Meng, Q., Zeng, M., Chen, G.: A P300 model for cerebot – a mind-controlled humanoid robot. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P., Karray, F. (eds.) Robot Intelligence Technology and Applications 2. AISC, vol. 274, pp. 495–502. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05582-4_43CrossRefGoogle Scholar
  15. 15.
    Li, Y., et al.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2495–2505 (2010).  https://doi.org/10.1109/TBME.2010.2055564CrossRefGoogle Scholar
  16. 16.
    Ma, Y., Ding, X., She, Q., Luo, Z., Potter, T., Zhang, Y.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput. Math. Methods Med. 2016(5), 667–677 (2016).  https://doi.org/10.1155/2016/4941235MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Purves, D., et al.: Neuroscience, vol. 3 (2004). ISBN 978-0878937257Google Scholar
  18. 18.
    Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings - International Conference on Pattern Recognition, vol. 4, pp. 709–717 (1996).  https://doi.org/10.1109/ICPR.1996.547657
  19. 19.
    Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Neurocomputing 131, 132–142 (2014).  https://doi.org/10.1016/j.neucom.2013.10.031CrossRefGoogle Scholar
  20. 20.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  21. 21.
    Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991).  https://doi.org/10.1016/0013-4694(91)90040-B, http://www.sciencedirect.com/science/article/pii/001346949190040BCrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J. Neurosci. Methods 255, 85–91 (2015).  https://doi.org/10.1016/j.jneumeth.2015.08.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Carlos Daniel Virgilio Gonzalez
    • 1
    Email author
  • Juan Humberto Sossa Azuela
    • 1
    • 2
  • Javier M. Antelis
    • 2
  1. 1.Centro de Investigación en Computación – Instituto Politécnico NacionalMexico CityMexico
  2. 2.Tecnológico de Monterrey, Escuela de Ingeniería y CienciasZapopanMexico

Personalised recommendations