Advertisement

Selection of Characteristics and Classification of DNA Microarrays Using Bioinspired Algorithms and the Generalized Neuron

  • Flor Alejandra Romero-MontielEmail author
  • Katya Rodríguez-Vázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

DNA microarrays are used for the massive quantification of gene expression. This analysis allows to diagnose, identify and classify different diseases. This is a computationally challenging task due to the large number of genes and a relatively small number of samples.

Some papers applied the generalized neuron (GN) to solve approximation functions, to calculate density estimates, prediction and classification problems [1, 2].

In this work we show how a GN can be used in the task of microarray classification. The proposed methodology is as follows: first reducing the dimensionality of the genes using a genetic algorithm, then the generalized neuron is trained using one bioinspired algorithms: Particle Swarm Optimization, Genetic Algorithm and Differential Evolution. Finally the precision of the methodology it is tested by classifying three databases of DNA microarrays: \(Leukemia\ benchmarck\) \(ALL-AML\), \(Colon\ Tumor\) and \(Prostate\ cancer\).

Keywords

Microarrays Genetic algorithms PSO Differential evolution Neural networks Pattern recognition 

Notes

Acknowledgments

The authors thank the IIMAS headquarters Mrida and Dr. Ernesto Perez Rueda for their valuable comments. Alejandra Romero thanks CONACYT for the scholarship received.

References

  1. 1.
    Rizwan, M., Jamil, M., Kothari, D.P.: Generalized neural network approach for global solar energy estimation in India. IEEE Trans. Sustain. Energy 3, 576–584 (2012)CrossRefGoogle Scholar
  2. 2.
    Kiran, R., Jetti, S.R., Venayagamoorthy, G.K.: Online training of a generalized neuron with particle swarm optimization. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 5088–5095. IEEE (2006)Google Scholar
  3. 3.
    Dwivedi, A.K.: Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput. Appl. 29(12), 1545–1554 (2018)CrossRefGoogle Scholar
  4. 4.
    Jain, I., Jain, V.K., Jain, R.: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl. Soft Comput. 62, 203–215 (2018)CrossRefGoogle Scholar
  5. 5.
    Kulkarni, R.V., Venayagamoorthy, G.K.: Feedforward and recurrent architectures: generalized neuron. Neural Netw. 22, 1011–1017 (2009)CrossRefGoogle Scholar
  6. 6.
    Chaturvedi, D.K., Man, M., Singh, R.K., Kalra, P.K.: Improved generalized neuron model for short-term load forecasting. Soft Comput. 8(1), 10–18 (2003)CrossRefGoogle Scholar
  7. 7.
    Medina, C.H.D.: Algoritmos bioinspirados. Ph.D. thesis, Instituto Politécnico Nacional. Centro de Investigación en Computación (2011)Google Scholar
  8. 8.
    Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, Amsterdam (2001)Google Scholar
  9. 9.
    Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI, Berkeley (1995)Google Scholar
  10. 10.
    Garro, B.A., Rodríguez, K., Vázquez, R.A.: Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl. Soft Comput. 38, 548–560 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Flor Alejandra Romero-Montiel
    • 1
    Email author
  • Katya Rodríguez-Vázquez
    • 1
  1. 1.Instituto de Investigaciones en Matemticas Aplicadas y Sistemas, IIMAS, UNAMMexico CityMexico

Personalised recommendations