Advertisement

Differential Evolution Algorithm Using a Dynamic Crossover Parameter with High-Speed Interval Type 2 Fuzzy System

  • Patricia Ochoa
  • Oscar CastilloEmail author
  • José Soria
  • Prometeo Cortes-Antonio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

The main contribution of this paper is the use of a new concept of type reduction in type-2 fuzzy systems for improving performance in differential evolution algorithm. The proposed method is an analytical approach using an approximation to the Continuous Karnik-Mendel (CEKM) method, and in this way the computational evaluation cost of the Interval Type 2 Fuzzy System is reduced. The performance of the proposed approach was evaluated with seven reference functions using the Differential Evolution algorithm with a crossover parameter that is dynamically adapted with the proposed methodology.

Keywords

Differential evolution algorithm Crossover Dynamic parameter adaptation and interval type 2 fuzzy logic 

References

  1. 1.
    Barraza, J., Rodríguez, L., Castillo, O., Melin, P., Valdez, F.: A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J. Optim. 2018, 1–18 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caraveo, C., Valdez, F., Castillo, O.: A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft. Comput. 22(15), 4907–4920 (2018)CrossRefGoogle Scholar
  3. 3.
    Peraza, C., Valdez, F., Castillo, O.: Improved method based on type-2 fuzzy logic for the adaptive harmony search algorithm. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. SCI, vol. 749, pp. 29–37. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-71008-2_3CrossRefGoogle Scholar
  4. 4.
    Agrawal, A.P., Kaur, A.: A comprehensive comparison of ant colony and hybrid particle swarm optimization algorithms through test case selection. In: Satapathy, S.C., Bhateja, V., Raju, K.S., Janakiramaiah, B. (eds.) Data Engineering and Intelligent Computing. AISC, vol. 542, pp. 397–405. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-3223-3_38CrossRefGoogle Scholar
  5. 5.
    Yıldız, B.S., Yıldız, A.R.: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater. Test. 60(3), 311–315 (2018)CrossRefGoogle Scholar
  6. 6.
    Ochoa, P., Castillo, O., Soria, J.: Differential evolution using fuzzy logic and a comparative study with other metaheuristics. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 257–268. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47054-2_17CrossRefGoogle Scholar
  7. 7.
    Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460–461, 476–496 (2018)CrossRefGoogle Scholar
  8. 8.
    Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)CrossRefGoogle Scholar
  9. 9.
    González, B., Valdez, F., Melin, P., Prado-Arechiga, G.: Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Expert Syst. Appl. 42(14), 5839–5847 (2015)CrossRefGoogle Scholar
  10. 10.
    Valdez, F., Melin, P., Castillo, O.: A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst. Appl. 41(14), 6459–6466 (2014)CrossRefGoogle Scholar
  11. 11.
    Valdez, F., Melin, P., Castillo, O.: Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf. Sci. 270, 143–153 (2014)CrossRefGoogle Scholar
  12. 12.
    Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding karnik mendel algorithm. Algorithms 10(3), 77 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sun, Z., Wang, N., Srinivasan, D., Bi, Y.: Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm. Int. J. Electr. Power Energy Syst. 62, 19–28 (2014)CrossRefGoogle Scholar
  14. 14.
    Marinaki, M., Marinakis, Y., Stavroulakis, G.E.: A differential evolution algorithm for fuzzy control of smart structures (2012)Google Scholar
  15. 15.
    Bi, Y., Srinivasan, D., Lu, X., Sun, Z., Zeng, W.: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization. Expert Syst. Appl. 41(16), 7338–7349 (2014)CrossRefGoogle Scholar
  16. 16.
    Ochoa, P., Castillo, O., Soria, J.: Differential evolution algorithm with interval type-2 fuzzy logic for the optimization of the mutation parameter. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. SCI, vol. 749, pp. 55–65. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-71008-2_5CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Misra, R.K., Singh, D.: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase, pp. 1835–1842 (2017)Google Scholar
  18. 18.
    Brest, J., Maucec, M.S., Boskovic, B.: Single objective real-parameter optimization: algorithm jSO, pp. 1311–1318 (2017)Google Scholar
  19. 19.
    Awad, N.H.¸Ali, M.Z., Suganthan, P.N.: Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, pp. 372–379 (2017)Google Scholar
  20. 20.
    Mohamed, A.W., Hadi, A.A., Fattouh, A.M., Jambi, K.M.: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, pp. 145–152 (2017)Google Scholar
  21. 21.
    Ochoa, P., Castillo, O., Soria, J.: Type-2 fuzzy logic dynamic parameter adaptation in a new fuzzy differential evolution method. In: Proceedings of NAFIPS 2016, pp. 1–6 (2016)Google Scholar
  22. 22.
    Leal- Ramírez, C., Castillo, O., Melin, P., Rodríguez, A.: Díaz: simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)CrossRefGoogle Scholar
  23. 23.
    Melin, P., Amezcua, J., Valdez, F., Castillo, O.: A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Castillo, O., Amador-Angulo, L., Castro, J.R., García Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)CrossRefGoogle Scholar
  25. 25.
    Melin, P., Mancilla, A., Lopez, M., Mendoza, O.: A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comput. 7(4), 1217–1226 (2007)CrossRefGoogle Scholar
  26. 26.
    Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innovative Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
  27. 27.
    Melin, P., Castillo, O.: Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory. CRC Press, Boca Raton (2001)CrossRefGoogle Scholar
  28. 28.
    Melin, P., Gonzalez, C.I., Castro, J.R., Mendoza, O., Castillo, O.: Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)CrossRefGoogle Scholar
  29. 29.
    Melin, P., Castillo, O.: Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955 (2001)CrossRefGoogle Scholar
  30. 30.
    Mendez, G.M., Castillo, O.: Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ 2005, pp. 230–235 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patricia Ochoa
    • 1
  • Oscar Castillo
    • 1
    Email author
  • José Soria
    • 1
  • Prometeo Cortes-Antonio
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations