Advertisement

Infrequent Item-to-Item Recommendation via Invariant Random Fields

  • Bálint DaróczyEmail author
  • Frederick Ayala-Gómez
  • András Benczúr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11288)

Abstract

Web recommendation services bear great importance in e-commerce and social media, as they aid the user in navigating through the items that are most relevant to her needs. In a typical web site, long history of previous activities or purchases by the user is rarely available. Hence in most cases, recommenders propose items that are similar to the most recent ones viewed in the current user session. The corresponding task is called session based item-to-item recommendation. Generating item-to-item recommendations by “people who viewed this, also viewed” lists works fine for popular items. These recommender systems rely on item-to-item similarities and item-to-item transitions for building next-item recommendations. However, the performance of these methods deteriorates for rare (i.e., infrequent) items with short transaction history. Another difficulty is the cold-start problem, items that recently appeared and had no time yet to accumulate a sufficient number of transactions. In this paper, we describe a probabilistic similarity model based on Random Fields to approximate item-to-item transition probabilities. We give a generative model for the item interactions based on arbitrary distance measures over the items including explicit, implicit ratings and external metadata. We reach significant gains in particular for recommending items that follow rare items. Our experiments on various publicly available data sets show that our new model outperforms both simple similarity baseline methods and recent item-to-item recommenders, under several different performance metrics.

Keywords

Recommender systems Fisher information Markov random fields 

Notes

Acknowledgments

The publication was supported by the Hungarian Government project 2018-1.2.1-NKP-00008: Exploring the Mathematical Foundations of Artificial Intelligence and by the Momentum Grant of the Hungarian Academy of Sciences. F.A. was supported by the Mexican Postgraduate Scholarship of the Mexican National Council for Science and Technology (CONACYT). B.D. was supported by 2018-1.2.1-NKP-00008: Exploring the Mathematical Foundations of Artificial Intelligence.

References

  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  2. 2.
    Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD Cup and Workshop (2007)Google Scholar
  3. 3.
    Besag, J.: Statistical analysis of non-lattice data. Statistician 24(3), 179–195 (1975)CrossRefGoogle Scholar
  4. 4.
    Davidson, J., et al.: The YouTube video recommendation system. In: Proceedings of the Fourth ACM RecSys, pp. 293–296 (2010)Google Scholar
  5. 5.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)CrossRefGoogle Scholar
  6. 6.
    Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_4CrossRefGoogle Scholar
  7. 7.
    Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! music dataset and KDD-Cup’11. In: KDD Cup, pp. 8–18 (2012)Google Scholar
  8. 8.
    Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Seminar (1971, unpublished)Google Scholar
  9. 9.
    Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 67–82. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33486-3_5CrossRefGoogle Scholar
  10. 10.
    Hidasi, B., Tikk, D.: Context-aware item-to-item recommendation within the factorization framework. In: Proceedings of the 3rd Workshop on Context-awareness in Retrieval and Recommendation, pp. 19–25. ACM (2013)Google Scholar
  11. 11.
    Jaakkola, T.S., Haussler, D.: Exploiting generative models in discriminative classifiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)Google Scholar
  12. 12.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)CrossRefGoogle Scholar
  13. 13.
    Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21298-7CrossRefzbMATHGoogle Scholar
  14. 14.
    Koenigstein, N., Koren, Y.: Towards scalable and accurate item-oriented recommendations. In: Proceedings of the 7th ACM RecSys, pp. 419–422. ACM (2013)Google Scholar
  15. 15.
    Koren, Y.: The bellkor solution to the netflix grand prize. Netflix Prize Documentation 81, 1–10 (2009)Google Scholar
  16. 16.
    Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans. Knowl. Disc. Data (TKDD) 4(1), 1 (2010)CrossRefGoogle Scholar
  17. 17.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  18. 18.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston, MA (2011).  https://doi.org/10.1007/978-0-387-85820-3_3CrossRefGoogle Scholar
  19. 19.
    Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: IEEE CVPR 2007 (2007)Google Scholar
  20. 20.
    Pilászy, I., Serény, A., Dózsa, G., Hidasi, B., Sári, A., Gub, J.: Neighbor methods vs. matrix factorization - case studies of real-life recommendations. In: ACM RecSys 2015 LSRS (2015)Google Scholar
  21. 21.
    Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on WWW, pp. 811–820. ACM (2010)Google Scholar
  22. 22.
    Janke, W., Johnston, D., Kenna, R.: Information geometry and phase transitions. Physica A: Stat. Mech. Appl. 336(1), 181–186 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_1CrossRefzbMATHGoogle Scholar
  24. 24.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on WWW, pp. 285–295 (2001)Google Scholar
  25. 25.
    Schein, A.I., Popescul, A. Ungar, L.H. Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th ACM SIGIR, pp. 253–260. ACM (2002)Google Scholar
  26. 26.
    C̆encov, N.N.: Statistical Decision Rules and Optimal Inference, vol. 53. American Mathematical Society (1982)Google Scholar
  27. 27.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on WWW, pp. 22–32. ACM (2005)Google Scholar
  28. 28.
    Wang, H., Yeung, D.-Y.: Towards bayesian deep learning: a framework and some existing methods. IEEE Trans. Knowl. Data Eng. 28(12), 3395–3408 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bálint Daróczy
    • 1
    Email author
  • Frederick Ayala-Gómez
    • 2
  • András Benczúr
    • 1
  1. 1.Institute for Computer Science and ControlHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary
  2. 2.Faculty of InformaticsEötvös Loránd UniversityBudapestHungary

Personalised recommendations