Advertisement

Ocular Complications of Radiotherapy

  • Mitchell Kamrava
  • James Lamb
  • Vidal Soberón
  • Tara A. McCannelEmail author
Chapter

Abstract

Although radiation therapy has become the treatment of choice for intraocular malignancies, there are numerous posttreatment complications of relevance to the ocular oncologist and referring ophthalmologist. Ocular complications associated with radiotherapy are well known, and the incidence of reported complications is highly variable. Complications depend not only on tumor size and location but also on radiation planning and surgical technique, which may vary between treatment centers. Anterior segment complications occur in 4–23% of treated patients with reported enucleation rates for neovascular glaucoma as high as 12% after treatment. Radiation-induced cataract develops in 8–83% by 5 years postradiation, and radiation retinopathy may occur in at least 10–63% of treated eyes, if not more over time. Optic neuropathy has been reported in up to 16% of patients. All of these complications affect visual acuity, and 26–62% of treated eyes experience a loss of at least two Snellen lines. Although cataract surgery for radiation-induced cataract may be effective in improving visual acuity, other treatment modalities, such as intravitreal triamcinolone or bevacizumab injections, hyperbaric oxygen treatments, and laser photocoagulation, for radiation-induced retinopathy, maculopathy, and optic neuropathy appear to be far less effective. Exudation and release of angiogenic factors from the irradiated tumor (i.e., “toxic tumor syndrome”) can be successfully treated by ablating or resecting the offending tumor.

Keywords

Radiation retinopathy Radiotherapy Brachytherapy Proton beam therapy Macular edema Choroidal melanoma Intra ocular radiation blocking Anti-VEGF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy – clinical, histopathological, ultrastructural and experimental correlations. Eye. 1991;5:239–51.CrossRefGoogle Scholar
  2. 2.
    Irvine AR, Wood IS. Radiation retinopathy as an experimental model for ischemic proliferative retinopathy and rubeosis iridis. Am J Ophthalmol. 1987;103:790–7.CrossRefGoogle Scholar
  3. 3.
    Durkin SR, Roos D, Higgs B, et al. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007;85(3):240–50.CrossRefGoogle Scholar
  4. 4.
    Heimann H, Coupland SE, Gochman R, et al. Alterations in expression of mucin, tenascin-c and syndecan-1 in the conjunctiva following retinal surgery and plaque radiotherapy. Graefes Arch Clin Exp Ophthalmol. 2001;239(7):488–95.CrossRefGoogle Scholar
  5. 5.
    Quivey JM, Char DH, Phillips TL, et al. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys. 1993;26(4):613–8.CrossRefGoogle Scholar
  6. 6.
    Lumbroso-Le Rouic L, Charif Chefchaouni M, Levy C, et al. 125I plaque brachytherapy for anterior uveal melanomas. Eye. 2004;18(9):911–6.CrossRefGoogle Scholar
  7. 7.
    Parsons JT, Bova FJ, Firzgerald CR, et al. Severe dry eye syndrome following external beam irradiation. Int J Radiat Oncol Biol Phys. 1994;30:775–80.CrossRefGoogle Scholar
  8. 8.
    Muller K, Nowak PJ, Naus N, et al. Lacrimal gland radiosensitivity in uveal melanoma patients. Int J Radiat Oncol Biol Phys. 2009;74(2):497–502.CrossRefGoogle Scholar
  9. 9.
    Horwath-Winter J, Schneider M, Wackernagel W, et al. Influence of single-fraction Gamma-Knife radiosurgery on ocular surface and tear function in choroidal melanoma patients. Br J Ophthalmol. 2013;97(4):466–70.CrossRefGoogle Scholar
  10. 10.
    Petrovich Z, McDonnell JM, Palmer D, et al. Histopathologic changes following irradiation for uveal tract melanoma. Am J Clin Oncol. 1994;17(4):298–306.CrossRefGoogle Scholar
  11. 11.
    Stack R, Elder M, Abdelaal A, et al. New Zealand experience of I125 brachytherapy for choroidal melanoma. Clin Exp Ophthalmol. 2005;33(5):490–4.CrossRefGoogle Scholar
  12. 12.
    Kaliki S, Shields CL, Rojanaporn D, et al. Scleral necrosis after plaque radiotherapy of uveal melanoma: a case–control study. Ophthalmology. 2013;120(5):1004–11. pii: S0161-6420(12)01008-1. 10.1016CrossRefGoogle Scholar
  13. 13.
    Sener EC, Kiratli H, Gedik S, et al. Ocular motility disturbances after episcleral plaque brachytherapy for uveal melanoma. J AAPOS. 2004;8(1):38–45.CrossRefGoogle Scholar
  14. 14.
    Kiratli H, Yilmaz PT, Sargon M. Ultrastructural alterations in extraocular muscles following iodine-125 brachytherapy for uveal melanoma. Strabismus. 2007;15(2):103–9.CrossRefGoogle Scholar
  15. 15.
    Detorakis ET, Engstrom RE Jr, Wallace R, et al. Iris and anterior chamber angle neovascularization after iodine 125 brachytherapy for uveal melanoma. Ophthalmology. 2005;112(3):505–10.CrossRefGoogle Scholar
  16. 16.
    Finger PT. Tumour location affects the incidence of cataract and retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol. 2000;84(9):1068–70.CrossRefGoogle Scholar
  17. 17.
    Char DH, Lonn LI, Margolis LW. Complications of cobalt plaque therapy of choroidal melanomas. Am J Ophthalmol. 1977;84(4):536–41.CrossRefGoogle Scholar
  18. 18.
    Fernandes BF, Weisbrod D, Yucel YH, et al. Neovascular glaucoma after stereotactic radiotherapy for juxtapapillary choroidal melanoma: histopathologic and dosimetric findings. Int J Radiat Oncol Biol Phys. 2011;80(2):377–84.CrossRefGoogle Scholar
  19. 19.
    Yanoff M, Duker JS, Augsburger JJ. Ophthalmology. 2nd ed. St Louis: Mosby; 2004.Google Scholar
  20. 20.
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7.CrossRefGoogle Scholar
  21. 21.
    Yeung SN, Paton KE, Waite C, et al. Intravitreal bevacizumab for iris neovascularization following proton beam irradiation for choroidal melanoma. Can J Ophthalmol. 2010;45(3):269–73.CrossRefGoogle Scholar
  22. 22.
    Cogan DG, Donaldson DD, Reese AB. Clinical and pathological characteristics of radiation cataract. AMA Arch Ophthalmol. 1952;47(1):55–70.CrossRefGoogle Scholar
  23. 23.
    Ferrufino-Ponce ZK, Henderson BA. Radiotherapy and cataract formation. Semin Ophthalmol. 2006;21(3):171–80.CrossRefGoogle Scholar
  24. 24.
    Collaborative Ocular Melanoma Study Group. Incidence of cataract and outcomes after cataract surgery in the first 5 years after iodine 125 brachytherapy in the Collaborative Ocular Melanoma Study COMS Report No. 27. Ophthalmology. 2007;114(7):1363–71.CrossRefGoogle Scholar
  25. 25.
    Fontanesi J, Meyer D, Xu S, et al. Treatment of choroidal melanoma with I-125 plaque. Int J Radiat Oncol Biol Phys. 1993;26(4):619–23.CrossRefGoogle Scholar
  26. 26.
    Muller K, Naus N, Nowak P, et al. Fractionated stereotactic radiotherapy for uveal melanoma, late clinical results. Radiother Oncol. 2012;102(2):219–24.CrossRefGoogle Scholar
  27. 27.
    Archer DB, Gardiner TA. Ionizing radiation and the retina. Curr Opin Ophthalmol. 1994;5(3):59–65.CrossRefGoogle Scholar
  28. 28.
    McCannel TA, Kim E, Kamrava M, et al. New ultra-wide-field angiographic grading scheme for radiation retinopathy after Iodine-125 brachytherapy for uveal melanoma. Retina. 2018;38(12):2415–21.Google Scholar
  29. 29.
    Horgan N, Shields CL, Mashayekhi A, et al. Classification and treatment of radiation maculopathy. Curr Opin Ophthalmol. 2010;21(3):233–8.CrossRefGoogle Scholar
  30. 30.
    Monroe AT, Bhandare N, Morris CG, et al. Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys. 2005;61:856–64.CrossRefGoogle Scholar
  31. 31.
    Bhandare N, Monroe AT, Morris CG, et al. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys. 2005;62:1070–7.CrossRefGoogle Scholar
  32. 32.
    Aziz HA, Singh AD. Radiation chorioretinopathy: evidence for effective therapy. Int Ophthalmol Clin. 2015;55(1):53–61.CrossRefGoogle Scholar
  33. 33.
    Gillies MC. Regulators of vascular permeability: potential sites for intervention in the treatment of macular edema. Doc Ophthalmol. 1999;97(3–4):251–60.CrossRefGoogle Scholar
  34. 34.
    Jermak CM, Dellacroce JT, Heffez J, et al. Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol. 2007;52(5):503–22.CrossRefGoogle Scholar
  35. 35.
    Finger PT. Radiation retinopathy is treatable with anti- vascular endothelial growth factor bevacizumab (Avastin). Int J Radiat Oncol Biol Phys. 2008;70(4):974–7.CrossRefGoogle Scholar
  36. 36.
    Pooprasert P, Young-Zvandasara T, Al-Bermani A. Radiation retinopathy treated successfully with aflibercept. BMJ Case Rep. 2017;2017.Google Scholar
  37. 37.
    Finger PT, Chin KJ, Semenova EA. Intravitreal anti-VEGF therapy for macular radiation retinopathy: a 10-year study. Eur J Ophthalmol. 2016;26(1):60–6.CrossRefGoogle Scholar
  38. 38.
    Hykin PG, Shields CL, Shields JA, et al. The efficacy of focal laser therapy in radiation-induced macular edema. Ophthalmology. 1998;105(8):1425–9.CrossRefGoogle Scholar
  39. 39.
    Kinyoun JL, Zamber RW, Lawrence BS, et al. Photocoagulation treatment for clinically significant radiation macular oedema. Br J Ophthalmol. 1995;79(2):144–9.CrossRefGoogle Scholar
  40. 40.
    Kinyoun JL, Chittum ME, Wells CG. Photocoagulation treatment of radiation retinopathy. Am J Ophthalmol. 1988;105(5):470–8.CrossRefGoogle Scholar
  41. 41.
    Aziz HA, Singh N, Bena J, et al. Vision loss following Episcleral brachytherapy for Uveal melanoma: development of a vision prognostication tool. JAMA Ophthalmol. 2016;134(6):615–20.CrossRefGoogle Scholar
  42. 42.
    Saconn PA, Gee CJ, Greven CM, et al. Alternative dose for choroidal melanoma treated with an iodine-125 radioactive plaque: a single-institution retrospective study. Int J Radiat Oncol Biol Phys. 2010;78(3):844–8.CrossRefGoogle Scholar
  43. 43.
    Murray TG, Markoe AM, Gold AS, et al. Long-term follow up comparing two treatment dosing strategies of (125) I plaque radiotherapy in the management of small/medium posterior uveal melanoma. J Ophthalmol. 2013;2013:517032.Google Scholar
  44. 44.
    Echegaray J, Bechrakis N, Singh N, et al. Iodine-125 brachytherapy for uveal melanoma: a systematic review of radiation dose. Ocul Oncol Pathol. 2017;3:193–8.CrossRefGoogle Scholar
  45. 45.
    Singh AD, Marwaha G, Wilkinson A, et al. Dosimetric benefit of a new ophthalmic radiation plaque. Invest Ophthalmol Vis Sci. 2012;53(14):3402.Google Scholar
  46. 46.
    Horgan N, Shields CL, Mashayekhi A, et al. Periocular triamcinolone for prevention of macular edema after plaque radiotherapy of uveal melanoma: a randomized controlled trial. Ophthalmology. 2009;116(7):1383–90.CrossRefGoogle Scholar
  47. 47.
    Shah SU, Shields CL, Bianciotto CG, et al. Intravitreal bevacizumab at 4-month intervals for prevention of macular edema after plaque radiotherapy of uveal melanoma. Ophthalmology. 2014;121(1):269–75.CrossRefGoogle Scholar
  48. 48.
    Kim IK, Lane AM, Jain P, et al. Ranibizumab for the prevention of radiation complications in patients treated with proton beam irradiation for choroidal melanoma. Trans Am Ophthalmol Soc. 2016;114:T2.Google Scholar
  49. 49.
    Oliver SC, Leu MY, DeMarco JJ, et al. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol. 2010;128(7):888–93.CrossRefGoogle Scholar
  50. 50.
    Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107(2):370.CrossRefGoogle Scholar
  51. 51.
    Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology. 1985;92(8):1118–26.CrossRefGoogle Scholar
  52. 52.
    Miller NR. Radiation-induced optic neuropathy: still no treatment. Clin Exp Ophthalmol. 2004;32(3):233–5.CrossRefGoogle Scholar
  53. 53.
    Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.CrossRefGoogle Scholar
  54. 54.
    Brown GC, Shields JA, Sanborn G, et al. Radiation optic neuropathy. Ophthalmology. 1982;89(12):1489–93.CrossRefGoogle Scholar
  55. 55.
    Konstantinidis L, Groenewald C, Coupland SE, et al. Trans-scleral local resection of toxic choroidal melanoma after proton beam radiotherapy. Br J Ophthalmol. 2014;98(6):775–9.CrossRefGoogle Scholar
  56. 56.
    McCannel TA. Post-brachytherapy tumor endoresection for treatment of toxic maculopathy in choroidal melanoma. Eye (Lond). 2013;27(8):984–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mitchell Kamrava
    • 1
  • James Lamb
    • 1
  • Vidal Soberón
    • 2
  • Tara A. McCannel
    • 3
    Email author
  1. 1.Department of Radiation OncologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Retina/OncologyJules Stein Eye InstituteLos AngelesUSA
  3. 3.Ophthalmic Oncology Center, Jules Stein Eye Institute, Department of OphthalmologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations