Advertisement

Principles of Laser Therapy

  • Hatem Krema
Chapter

Abstract

Since its inception, laser has been increasingly used for treatment of multiple ocular conditions. Stimulated emission of photons in a lasing medium produces laser beams that vary in their energy according to their wavelength. Ophthalmic lasers could produce thermal, chemical, or mechanical effects on ocular tissues. The factors that determine the laser effects include the degree of absorption of a specific laser wavelength by the tissue pigments, laser power, the size of laser spot on the target tissue, the duration of application, and media clarity.

Ophthalmic lasers are delivered through slit lamp, indirect ophthalmoscope, or fiber-optic probe. Advanced delivery systems enabled more tolerable, precise, and shorter treatment sessions that can be monitored on a wide screen.

Techniques of ophthalmic laser therapy include laser photocoagulation, transpupillary thermotherapy, and photodynamic therapy. These techniques are employed in ophthalmic oncology to treat a variety of intraocular and periocular tumors. Laser is used as a primary or adjuvant treatment and as a treatment for some radiation-induced toxicities.

Keywords

Laser Physics Wavelength Photodynamic Photocoagulation Thermotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A. On the quantum mechanics of radiation [in German]. Phys Z. 1917;18:121–8.Google Scholar
  2. 2.
    Schechter RJ. An introduction to basic laser physics. In: Tasman W, Jaeger EA, eds. Duane’s clinical ophthalmology. 1992 Revised edition. Philadelphia: J.B. Lippincott Company; 1992. (1)69A:1–8.Google Scholar
  3. 3.
    Sramek C, Paulus Y, Nomoto H, et al. Dynamics of retinal photocoagulation and rupture. J Biomed Opt. 2009;14(3):034007.CrossRefGoogle Scholar
  4. 4.
    LaMuraglia GM, Adili F, Karp SJ, et al. Photodynamic therapy inactivates extracellular matrix-basic fibroblast growth factor: insights to its effect on the vascular wall. J Vasc Surg. 1997;26(2):294–301.CrossRefGoogle Scholar
  5. 5.
    Schmidt-Erfurth U, Miller J, Sickenberg M, et al. Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples. Graefes Arch Clin Exp Ophthalmol. 1998;236(5):365–74.CrossRefGoogle Scholar
  6. 6.
    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103(2):577–644.CrossRefGoogle Scholar
  7. 7.
    Capon MR, Docchio F, Mellerio J. Nd:YAG laser photodisruption: an experimental investigation on shielding and multiple plasma formation. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):362–6.CrossRefGoogle Scholar
  8. 8.
    Fankhauser F, Kwasniewska S. Laser in ophthalmology. Basic, diagnostic and surgical aspects. The Hague: Kugler Publications; 2003.Google Scholar
  9. 9.
    Palanker DV, Blumenkranz MS, Marmor MF. Fifty years of ophthalmic laser therapy. Arch Ophthalmol. 2011;129(12):1613–9.CrossRefGoogle Scholar
  10. 10.
    Peyman GA, Raichand M, Zeimer RC. Ocular effects of various laser wavelengths. Surv Ophthalmol. 1984;28(5):391–404.CrossRefGoogle Scholar
  11. 11.
    Pomerantzeff O, Kaneko H, Donovan RH, et al. Effect of the ocular media on the main wavelengths of argon laser emission. Invest Ophthalmol Vis Sci. 1976;15:70–7.Google Scholar
  12. 12.
    Al-Hussainy S, Dodson PM, Gibson JM. Pain response and follow-up of patients undergoing panretinal laser photocoagulation with reduced exposure times. Eye (Lond). 2008;22:96–9.CrossRefGoogle Scholar
  13. 13.
    Soleimani A, Rasta SH, Banaei T, et al. Effects of laser physical parameters on lesion size in retinal photocoagulation surgery: clinical OCT and experimental study. J Biomed Phys Eng. 2017;7(4):355–64.Google Scholar
  14. 14.
    Mainster MA, Crossman JL, Erickson PJ, et al. Retinal laser lenses: magnification, spot size, and field of view. Br J Ophthalmol. 1990;74(3):177–9.CrossRefGoogle Scholar
  15. 15.
    Blumenkranz MS, Yellachich D, Andersen DE, et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina. 2006;26(3):370–6.CrossRefGoogle Scholar
  16. 16.
    Verdaasdonk RM, van Swol CF. Laser light delivery systems for medical applications. Phys Med Biol. 1997;42(5):869–94.CrossRefGoogle Scholar
  17. 17.
    Yadav NK, Jayadev C, Rajendran A, et al. Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol. 2014;62(1):50–4.CrossRefGoogle Scholar
  18. 18.
    L’Esperance FJ. Ophthalmic lasers. St. Louis: CV Mosby; 1983. p. 340–50.Google Scholar
  19. 19.
    Brader HS, Young LH. Subthreshold diode micropulse laser: a review. Semin Ophthalmol. 2016;31(1–2):30–9.CrossRefGoogle Scholar
  20. 20.
    Finger PT, Kurli M. Laser photocoagulation for radiation retinopathy after ophthalmic plaque radiation therapy. Br J Ophthalmol. 2005;89(6):730–8.CrossRefGoogle Scholar
  21. 21.
    Shields CL, Shields JA, Kiratli H, et al. Treatment of retinoblastoma with indirect ophthalmoscope laser photocoagulation. J Pediatr Ophthalmol Strabismus. 1995;2(5):317–22.Google Scholar
  22. 22.
    Schmidt D, Natt E, Neumann HP. Long-term results of laser treatment for retinal angiomatosis in von Hippel-Lindau disease. Eur J Med Res. 2000;5(2):47–58.Google Scholar
  23. 23.
    Singh AD. Ocular phototherapy. Eye. 2013;27(2):190–8.CrossRefGoogle Scholar
  24. 24.
    Wesley RE, Bond JB. Carbon dioxide laser in ophthalmic plastic and orbital surgery. Ophthalmic Surg. 1985;16(10):631–3.Google Scholar
  25. 25.
    Oosterhuis JA, Journee-de Korver HG, Kakebeeke-Kemme HM, et al. Transpupillary thermotherapy in choroidal melanomas. Arch Ophthalmol. 1995;113(3):315–21.CrossRefGoogle Scholar
  26. 26.
    Singh AD, Kivela T, Seregard S, et al. Primary transpupillary thermotherapy of “small” choroidal melanoma: is it safe? Br J Ophthalmol. 2008;92(6):727–8.CrossRefGoogle Scholar
  27. 27.
    Singh AD, Rundle PA, Berry-Brincat A, et al. Extrascleral extension of choroidal malignant melanoma following transpupillary thermotherapy. Eye (Lond). 2004;18(1):91–3.CrossRefGoogle Scholar
  28. 28.
    Dennaoui J, Bronkhorst IH, Ly LV, et al. Changes in immunological markers and influx of macrophages following trans-scleral thermotherapy of uveal melanoma. Acta Ophthalmol. 2011;89(3):268–73.CrossRefGoogle Scholar
  29. 29.
    Shields CL, Cater J, Shields JA, et al. Combined plaque radiotherapy and transpupillary thermotherapy for choroidal melanoma: tumor control and treatment complications in 270 consecutive patients. Arch Ophthalmol. 2002;120(7):933–40.CrossRefGoogle Scholar
  30. 30.
    Gunduz K. Transpupillary thermotherapy in the management of circumscribed choroidal hemangioma. Surv Ophthalmol. 2004;49(3):316–27.CrossRefGoogle Scholar
  31. 31.
    Abramson DH, Schefler AC. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma: technique and predictors of success. Ophthalmology. 2004;111(5):984–99.CrossRefGoogle Scholar
  32. 32.
    Schmidt-Erfurth U, Hasan T, Gragoudas E, et al. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994;101(12):1953–61.CrossRefGoogle Scholar
  33. 33.
    Kramer M, Miller JW, Michaud N, et al. Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Selective treatment of choroidal neovascularization in monkeys. Ophthalmology. 1996;103(3):427–38.CrossRefGoogle Scholar
  34. 34.
    Woodburn KW, Engelman CJ, Blumenkranz MS. Photodynamic therapy for choroidal neovascularization: a review. Retina. 2002;22(4):391–405.CrossRefGoogle Scholar
  35. 35.
    Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119(2):198–207.Google Scholar
  36. 36.
    Erikitola OC, Crosby-Nwaobi R, Lotery AJ, et al. Photodynamic therapy for central serous chorioretinopathy. Eye. 2014;28(8):944–57.CrossRefGoogle Scholar
  37. 37.
    Wong CW, Cheung CM, Mathur R, et al. Three-year results of polypoidal choroidal vasculopathy treated with photodynamic therapy: retrospective study and systematic review. Retina. 2015;35(8):1577–93.CrossRefGoogle Scholar
  38. 38.
    Boixadera A, Garcia-Arumi J, Martinez-Castillo V, et al. Prospective clinical trial evaluating the efficacy of photodynamic therapy for symptomatic circumscribed choroidal hemangioma. Ophthalmology. 2009;116:100–5.CrossRefGoogle Scholar
  39. 39.
    Sachdeva R, Dadgostar H, Kaiser PK, et al. Verteporfin photodynamic therapy of six eyes with retinal capillary haemangioma. Acta Ophthalmol. 2010;88(8):e334–40.CrossRefGoogle Scholar
  40. 40.
    Schmidt-Erfurth UM, Kusserow C, Barbazetto IA, et al. Benefits and complications of photodynamic therapy of papillary capillary hemangiomas. Ophthalmology. 2002;109(7):1256–66.CrossRefGoogle Scholar
  41. 41.
    García-Arumí J, Amselem L, Gunduz K, et al. Photodynamic therapy for symptomatic subretinal fluid related to choroidal nevus. Retina. 2012;32(5):936–41.CrossRefGoogle Scholar
  42. 42.
    Fabian ID, Stacey AW, Harby LA, et al. Primary photodynamic therapy with verteporfin for pigmented posterior pole cT1a choroidal melanoma: a 3-year retrospective analysis. Br J Ophthalmol. 2018. pii: bjophthalmol-2017-311747.Google Scholar
  43. 43.
    Turkoglu EB, Pointdujour-Lim R, Mashayekhi A, et al. Photodynamic therapy as a primary treatment for small choroidal melanoma. Retina. 2018;  https://doi.org/10.1097/IAE.0000000000002169. [Epub ahead of print].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hatem Krema
    • 1
  1. 1.Ocular Oncology Service, Princess Margaret Cancer Center/University Health NetworkTorontoCanada

Personalised recommendations