Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory pp 133-159 | Cite as
One-Loop StringScatteringAmplitudes as Iterated Eisenstein Integrals
Abstract
In these proceedings we review and expand on the recent appearance of iterated integrals on an elliptic curve in string perturbation theory. We represent the low-energy expansion of one-loop open-string amplitudes at multiplicity four and five as iterated integrals over holomorphic Eisenstein series. The framework of elliptic multiple zeta values serves as a link between the punctured Riemann surfaces encoding string interactions and the iterated Eisenstein integrals in the final results. In the five-point setup, the treatment of kinematic poles is discussed explicitly.
Notes
Acknowledgements
We would like to thank KMPB for supporting the conference “Elliptic Integrals, Elliptic Functions and Modular Forms Quantum Field Theory”. The research of OS was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.
References
- 1.F. Brown, A. Levin, arXiv:1110.6917v2 [math.NT]
- 2.B. Enriquez, Bull. Soc. Math. Fr. 144, 395 (2016), arxiv:1301.3042 [math.NT]
- 3.N. Matthes, Ph.D. thesis, Universität Hamburg (2016)Google Scholar
- 4.J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, JHEP 1507, 112 (2015), arXiv:1412.5535 [hep-th]
- 5.J. Broedel, N. Matthes, O. Schlotterer, J. Phys. A 49(15), 155203 (2016), arXiv:1507.02254 [hep-th]
- 6.J. Broedel, N. Matthes, G. Richter, O. Schlotterer, J. Phys. A 51(28), 285401 (2018), arXiv:1704.03449 [hep-th]
- 7.L. Adams, S. Weinzierl, Commun. Number Theory Phys. 12, 193 (2018), arXiv:1704.08895 [hep-ph]
- 8.J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]
- 9.J. Broedel, C. Duhr, F. Dulat, L. Tancredi, JHEP 1805, 093 (2018), arXiv:1712.07089 [hep-th]
- 10.J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, arXiv:1803.10256 [hep-th]
- 11.J. Broedel, O. Schlotterer, F. Zerbini, arXiv:1803.00527 [hep-th]
- 12.M.B. Green, J.G. Russo, P. Vanhove, JHEP 0802, 020 (2008), arXiv:0801.0322 [hep-th]
- 13.E. D’Hoker, M.B. Green, O. Gürdogan, P. Vanhove, Commun. Number Theory Phys. 11, 165 (2017), arXiv:1512.06779 [hep-th]
- 14.E. D’Hoker, M.B. Green, B. Pioline, arXiv:1712.06135 [hep-th]
- 15.E. D’Hoker, M.B. Green, B. Pioline, arXiv:1806.02691 [hep-th]
- 16.M.B. Green, J.H. Schwarz, E. Witten, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1987)Google Scholar
- 17.M.B. Green, J.H. Schwarz, Phys. Lett. 151B, 21 (1985)Google Scholar
- 18.M.B. Green, J.H. Schwarz, Nucl. Phys. B 255, 93 (1985)Google Scholar
- 19.M.B. Green, J.H. Schwarz, Phys. Lett. 149B, 117 (1984)Google Scholar
- 20.M.B. Green, J.H. Schwarz, L. Brink, Nucl. Phys. B 198, 474 (1982)Google Scholar
- 21.A. Tsuchiya, Phys. Rev. D 39, 1626 (1989)MathSciNetCrossRefGoogle Scholar
- 22.S. Stieberger, T.R. Taylor, Nucl. Phys. B 648, 3 (2003), arXiv:hep-th/0209064
- 23.C.R. Mafra, C. Stahn, JHEP 0903, 126 (2009), arXiv:0902.1539 [hep-th]
- 24.C.R. Mafra, O. Schlotterer, JHEP 1408, 099 (2014), arXiv:1203.6215 [hep-th]
- 25.Z. Bern, J.J.M. Carrasco, H. Johansson, Phys. Rev. D 78, 085011 (2008), arXiv:0805.3993 [hep-ph]
- 26.C.R. Mafra, O. Schlotterer, JHEP 1604, 148 (2016), arXiv:1603.04790 [hep-th]
- 27.C.R. Mafra, O. Schlotterer, arXiv:1711.09104 [hep-th]
- 28.L. Kronecker, Mathematische Werke IV, 313–318 (1881)Google Scholar
- 29.D. Mumford, M. Nori, P. Norman, Birkhäuser 1983, 1984, Bd. 2Google Scholar
- 30.N. Matthes, Algebra Number Theory 11–9, 2113 (2017), arxiv:1708.04561 [math.NT]
- 31.F. Brown, arXiv:1708.03354 [math.NT]
- 32.J. Broedel, N. Matthes, O. Schlotterer, https://tools.aei.mpg.de/emzv/index.html
- 33.J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 582 (2010), arXiv:0907.2557 [math-ph]
- 34.P. Tourkine, P. Vanhove, Phys. Rev. Lett. 117(21), 211601 (2016), arXiv:1608.01665 [hep-th]
- 35.S. Hohenegger, S. Stieberger, Nucl. Phys. B 925, 63 (2017), arXiv:1702.04963 [hep-th]
- 36.A. Ochirov, P. Tourkine, P. Vanhove, JHEP 1710, 105 (2017), arXiv:1707.05775 [hep-th]
- 37.M.B. Green, J.H. Schwarz, Nucl. Phys. B 198, 441 (1982)Google Scholar
- 38.B. Enriquez, Selecta Math. (N.S.) 20, 491 (2014)Google Scholar
- 39.J. Broedel, O. Schlotterer, S. Stieberger, T. Terasoma, Phys. Rev. D 89(6), 066014 (2014), arXiv:1304.7304 [hep-th]
- 40.J. Broedel, O. Schlotterer, S. Stieberger, Fortsch. Phys. 61, 812 (2013), arXiv:1304.7267 [hep-th]
- 41.C.R. Mafra, O. Schlotterer, JHEP 1701, 031 (2017), arXiv:1609.07078 [hep-th]
- 42.C.R. Mafra, O. Schlotterer, S. Stieberger, Nucl. Phys. B 873, 419 (2013), arXiv:1106.2645 [hep-th]
- 43.O. Schlotterer, S. Stieberger, J. Phys. A 46, 475401 (2013), arXiv:1205.1516 [hep-th]
- 44.J. Broedel, O. Schlotterer, S. Stieberger, http://wwwth.mpp.mpg.de/members/stieberg/mzv/index.html
- 45.D. Nandan, J. Plefka, O. Schlotterer, C. Wen, JHEP 1610, 070 (2016), arXiv:1607.05701 [hep-th]
- 46.J.M. Drummond, E. Ragoucy, JHEP 1308, 135 (2013), arXiv:1301.0794 [hep-th]