Advertisement

Iterative Non-iterative Integrals in Quantum Field Theory

  • Johannes BlümleinEmail author
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

Single scale Feynman integrals in quantum field theories obey difference or differential equations with respect to their discrete parameter N or continuous parameter x. The analysis of these equations reveals to which order they factorize, which can be different in both cases. The simplest systems decouple to linear differential equations which factorize to first-order. For them complete solution algorithms exist. The next interesting level is formed by those cases that decouple to linear differential equations in which also irreducible second-order factors emerge. We give a survey on the latter case. The solutions can be obtained as general \(_2F_1\) solutions. The corresponding solutions of the associated inhomogeneous differential equations form so-called iterative non-iterative integrals. There are known conditions under which one may represent the solutions by complete elliptic integrals. In this case one may find representations in terms of meromorphic modular forms, out of which special cases allow representations in the framework of elliptic polylogarithms with generalized parameters. These are in general weighted by a power of \(1/\eta (\tau )\), where \(\eta (\tau )\) is Dedekind’s \(\eta \)-function. Single scale elliptic solutions emerge in the \(\rho \)-parameter, which we use as an illustrative example. They also occur in the 3-loop QCD corrections to massive operator matrix elements and the massive 3-loop form factors.

Notes

Acknowledgements

I would like to thank J. Ablinger, A. De Freitas, M. van Hoeij, E. Imamoglu, P. Marquard, C.G. Raab, C.-S. Radu, and C. Schneider for collaboration in two projects and A. Behring, D. Broadhurst, H. Cohen, G. Köhler, P. Paule, E. Remiddi, M. Steinhauser, J.-A. Weil, S. Weinzierl and D. Zagier for discussions.

References

  1. 1.
    J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 582 (2010), arXiv:0907.2557 [math-ph]
  2. 2.
    J. Ablinger, J. Blümlein, C. Schneider, J. Math. Phys. 52, 102301 (2011), arXiv:1105.6063 [math-ph]
  3. 3.
    J. Ablinger, J. Blümlein, C. Schneider, J. Math. Phys. 54, 082301 (2013), arXiv:1302.0378 [math-ph]
  4. 4.
    J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, J. Math. Phys. 55, 112301 (2014), arXiv:1407.1822 [hep-th]
  5. 5.
    S. Laporta, Phys. Lett. B 772, 232 (2017), arXiv:1704.06996 [hep-ph]
  6. 6.
    P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 118(8), 082002 (2017), arXiv:1606.08659 [hep-ph]
  7. 7.
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, JHEP 1702, 090 (2017), arXiv:1701.01404 [hep-ph]
  8. 8.
    T. Luthe, A. Maier, P. Marquard, Y. Schröder, JHEP 1710, 166 (2017), arXiv:1709.07718 [hep-ph]
  9. 9.
    J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B 724, 3 (2005), arXiv:0504242 [hep-ph/0504242]
  10. 10.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004), arXiv:0403192 [hep-ph/0403192]
  11. 11.
    A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004), arXiv:0404111 [hep-ph/0404111]
  12. 12.
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B 922, 1 (2017), arXiv:1705.01508 [hep-ph]
  13. 13.
    J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wißbrock, Nucl. Phys. B 844, 26 (2011), arXiv:1008.3347 [hep-ph]
  14. 14.
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, Nucl. Phys. B 886, 733 (2014), arXiv:1406.4654 [hep-ph]
  15. 15.
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B 890, 48 (2014), arXiv:1409.1135 [hep-ph]
  16. 16.
    J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, Nucl. Phys. B 882, 263 (2014), arXiv:1402.0359 [hep-ph]
  17. 17.
    A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, Eur. Phys. J. C 74(9), 3033 (2014), arXiv:1403.6356 [hep-ph]
  18. 18.
    K.G. Wilson, Phys. Rev. 179, 1499 (1969); R.A. Brandt, Fortsch. Phys. 18, 249 (1970); W. Zimmermann, Lecturer on Elementary Particle Physics and Quantum Field Theory, Brandeis Summer Inst., vol. 1 (MIT Press, Cambridge, 1970), p. 395; Y. Frishman, Ann. Phys. 66, 373 (1971)Google Scholar
  19. 19.
    N.E. Nörlund, Vorlesungen über Differenzenrechnung (Springer, Berlin, 1924)CrossRefGoogle Scholar
  20. 20.
    B. Zürcher, Rationale Normalformen von pseudo-linearen Abbildungen, Master’s thesis, Mathematik, ETH Zürich (1994)Google Scholar
  21. 21.
    S. Gerhold, Uncoupling systems of linear Ore operator equations, Master’s thesis, RISC, J. Kepler University, Linz (2002)Google Scholar
  22. 22.
    C. Schneider, A. De Freitas, J. Blümlein, PoS (LL2014), 017, arXiv:1407.2537 [cs.SC]
  23. 23.
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Comput. Phys. Commun. 202, 33 (2016), arXiv:1509.08324 [hep-ph]
  24. 24.
    C. Schneider, Sém. Lothar. Combin. 56(1) (2007). article B56bGoogle Scholar
  25. 25.
    C. Schneider, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions Texts and Monographs in Symbolic Computation eds. C. Schneider, J. Blümlein, vol. 325 (Springer, Wien, 2013), arXiv:1304.4134 [cs.SC]
  26. 26.
    J. Ablinger, J. Blümlein, S. Klein, C. Schneider, Nucl. Phys. Proc. Suppl. 205–206, 110 (2010). arXiv:1006.4797 [math-ph]; J. Blümlein, A. Hasselhuhn, C. Schneider, PoS (RADCOR 2011), 032. arXiv:1202.4303 [math-ph]; C. Schneider, Computer Algebra Rundbrief 53(8) (2013) ; C. Schneider, J. Phys. Conf. Ser. 523, 012037 (2014), arXiv:1310.0160 [cs.SC]
  27. 27.
    A.V. Kotikov, Phys. Lett. B 254,158 (1991); Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Lett. B 302, 299 (1993). Erratum: [Phys. Lett. B 318, 649 (1993)] [hep-ph/9212308]; Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240]; E. Remiddi, Nuovo Cim. A 110, 1435 (1997) [hep-th/9711188]; M. Caffo, H. Czyz, S. Laporta, E. Remiddi, Acta Phys. Polon. B 29, 2627 (1998) [hep-th/9807119]; Nuovo Cim. A 111, 365 (1998) [hep-th/9805118]; T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000) [hep-ph/9912329]; J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806 [hep-th]
  28. 28.
    J. Lagrange, Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis, t. II, 1760–1761; Oeuvres t. I, p. 263; C.F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo tractate, Commentationes societas scientiarum Gottingensis recentiores, Vol III, 1813, Werke Bd. V pp. 5–7; G. Green, Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, 1828 [Green Papers, pp. 1–115]; M. Ostrogradski, Mem. Ac. Sci. St. Peters. 6, 129 (1831); K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981); S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000) [hep-ph/0102033]; C. Studerus, Comput. Phys. Commun. 181, 1293 (2010). arXiv:0912.2546 [physics.comp-ph]; A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction. arXiv:1201.4330 [hep-ph]; P. Marquard, D. Seidel, TheCrusheralgorithm, (unpublished)
  29. 29.
    J. Blümlein, C. Schneider, Int., J. Mod. Phys. A 33(17), 1830015 (2018)Google Scholar
  30. 30.
    J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 2037 (1999), arXiv:hep-ph/9806280
  31. 31.
    J. Blümlein, S. Kurth, Phys. Rev. D 60, 014018 (1999), arXiv:hep-ph/9810241
  32. 32.
    E. Remiddi, J.A.M. Vermaseren, Int. J. Mod. Phys. A 15, 725 (2000), arXiv:9905237 [hep-ph/9905237]MathSciNetCrossRefGoogle Scholar
  33. 33.
    E.E. Kummer, Journal für die reine und angewandte Mathematik (Crelle) 21, 74 (1840); H. Poincaré, Acta Math. 4, 201 (1884); A. Jonquière, Bihang till Kongl. Svenska Vetenskaps-Akademiens Handlingar 15, 1 (1889); J.A. Lappo-Danilevsky, Mémoirs sur la Théorie des Systèmes Différentielles Linéaires, (Chelsea Publ. Co, New York, 1953); K.T. Chen, Trans. A.M.S. 156(3), 359 (1971); A.B. Goncharov, Math. Res. Lett. 5, 497 (1998)Google Scholar
  34. 34.
    S. Moch, P. Uwer, S. Weinzierl, J. Math. Phys. 43, 3363 (2002), arXiv:0110083 [hep-ph/0110083]
  35. 35.
    J. Ablinger, J. Blümlein, C. Schneider, J. Phys. Conf. Ser. 523, 012060 (2014), arXiv:1310.5645 [math-ph]
  36. 36.
    J. Ablinger, J. Blümlein, arXiv:1304.7071 [math-ph]
  37. 37.
    M.E. Hoffman, J. Algebr. Comb. 11, 49 (2000)Google Scholar
  38. 38.
    J. Blümlein, Comput. Phys. Commun. 159, 19 (2004), arXiv:0311046 [hep-ph/0311046]
  39. 39.
    J. Ablinger, PoS (LL2014), 019; A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, Diploma Thesis, J. Kepler University Linz, (2009), arXiv:1011.1176 [math-ph]
  40. 40.
    J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. thesis, J. Kepler University Linz, (2012), arXiv:1305.0687 [math-ph]
  41. 41.
    The 5th International Congress on Mathematical Software ZIB Berlin from July 11–14 (2016); Session: Symbolic computation and elementary particle physics. https://www.risc.jku.at/conferences/ICMS2016/; see also J.B.s talk at QCD@LHC2016, U. Zürich, August 22–26 (2016). https://indico.cern.ch/event/516210/timetable/#all.detailed
  42. 42.
    L. Euler, Recherches sur la question des inegalites du mouvement de Saturne et de Jupiter, sujet propose pour le prix de l’annee 1748, (Paris, France: G. Martin, J.B. Coignard, H.L. Guerin, 1749); J.-L. Lagrange, Solution de différens problémes du calcul integral, Mélanges de philosophie et de mathématique de la Société royale de Turin, vol. 3, pp. 179; E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen, (Geest & Portig, Leipzig, 1967), 8th EdnGoogle Scholar
  43. 43.
    J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]
  44. 44.
    J. Blümlein, A. De Freitas, M. Van Hoeij, E. Imamoglu, P. Marquard, C. Schneider, PoS (LL2018), 017, arXiv:1807.05287 [hep-ph]
  45. 45.
    A. Sabry, Nucl. Phys. 33, 401 (1962)Google Scholar
  46. 46.
    D.J. Broadhurst, Z. Phys. C 47, 115 (1990); D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Z. Phys. C 60, 287 (1993). arXiv:9304303 [hep-ph/9304303]; F.A. Berends, M. Buza, M. Böhm, R. Scharf, Z. Phys. C 63, 227 (1994); S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. 37B(2), 95 (1994). arXiv:9406404 [hep-ph/9406404]; S. Bauberger, M. Böhm, Nucl. Phys. B 445, 25 (1995), arXiv:9501201 [hep-ph/9501201]
  47. 47.
    M. Caffo, H. Czyz, E. Remiddi, Nucl. Phys. B 634, 309 (2002), arXiv:0203256 [hep-ph/0203256]
  48. 48.
    S. Laporta, E. Remiddi, Nucl. Phys. B 704, 349 (2005), arXiv:0406160 [hep-ph/0406160]
  49. 49.
    S. Pozzorini, E. Remiddi, Comput. Phys. Commun. 175, 381 (2006). arXiv:0505041 [hep-ph/0505041]; S. Groote, J.G. Körner, A.A. Pivovarov, Annals Phys. 322, 2374 (2007). arXiv:0506286 [hep-ph/0506286]; B.A. Kniehl, A.V. Kotikov, A. Onishchenko, O. Veretin, Nucl. Phys. B 738, 306 (2006). arXiv:0510235 [hep-ph/0510235]; M. Caffo, H. Czyz, M. Gunia, E. Remiddi, Comput. Phys. Commun. 180, 427 (2009), arXiv:0807.1959 [hep-ph]
  50. 50.
    U. Aglietti, R. Bonciani, L. Grassi, E. Remiddi, Nucl. Phys. B 789, 45 (2008), arXiv:0705.2616 [hep-ph]
  51. 51.
    D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, J. Phys. A 41, 205203 (2008), arXiv:0801.0891 [hep-th]
  52. 52.
    D. Broadhurst, arXiv:0801.4813 [hep-th]
  53. 53.
    S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Num. Theor. Phys. 6, 203 (2012), arXiv:1112.4360 [hep-ph]; S. Groote, J.G. Körner, A.A. Pivovarov, Eur. Phys. J. C 72, 2085 (2012), arXiv:1204.0694 [hep-ph]; S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Math. Phys. 326, 237 (2014), arXiv:1212.4389 [hep-ph]; M. Søgaard, Y. Zhang, Phys. Rev. D 91, 081701 (2015), arXiv:1412.5577
  54. 54.
    S. Bloch, P. Vanhove, J. Number Theor. 148, 328 (2015)Google Scholar
  55. 55.
    L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54, 052303 (2013), arXiv:1302.7004 [hep-ph]; E. Remiddi, L. Tancredi, Nucl. Phys. B 880, 343 (2014), arXiv:1311.3342 [hep-ph]
  56. 56.
    L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 56(7), 072303 (2015), arXiv:1504.03255 [hep-ph]
  57. 57.
    L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57(3), 032304 (2016), arXiv:1512.05630 [hep-ph]
  58. 58.
    L. Adams, C. Bogner, S. Weinzierl, PoS (LL2016), 033, arXiv:1606.09457 [hep-ph]; S. Bloch, M. Kerr, P. Vanhove, Compos. Math. 151, 2329 (2015)
  59. 59.
    L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 55(10), 102301 (2014), arXiv:1405.5640, [hep-ph]
  60. 60.
    E. Remiddi, L. Tancredi, Nucl. Phys. B 907, 400 (2016), arXiv:1602.01481 [hep-ph]
  61. 61.
    L. Adams, C. Bogner, A. Schweitzer, S. Weinzierl, J. Math. Phys. 57, 122302 (2016), arXiv:1607.01571 [hep-ph]
  62. 62.
    J. Brödel, C.R. Mafra, N. Matthes, O. Schlotterer, JHEP 1507, 112 (2015), arXiv:1412.5535 [hep-th]; R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, JHEP 1612, 096 (2016), arXiv:1609.06685 [hep-ph]; A. Primo, L. Tancredi, Nucl. Phys. B 916, 94 (2017), arXiv:1610.08397 [hep-ph]; Nucl. Phys. B 921, 316 (2017), arXiv:1704.05465 [hep-ph]
  63. 63.
    G. Passarino, Eur. Phys. J. C 77(2), 77 (2017), arXiv:1610.06207 [math-ph]
  64. 64.
    A. von Manteuffel, L. Tancredi, JHEP 1706, 127 (2017), arXiv:1701.05905 [hep-ph]
  65. 65.
    L. Adams, S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018), arXiv:1704.08895 [hep-ph]
  66. 66.
    C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B 922, 528 (2017), arXiv:1705.08952; arXiv:1807.02542 [hep-th], contribution to this volume; E. Remiddi, L. Tancredi, Nucl. Phys. B 925, 212 (2017), arXiv:1709.03622; R.N. Lee, A.V. Smirnov, V.A. Smirnov, JHEP 03, 008 (2018), arXiv:1709.07525; J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel, M. Wilhelm, Phys. Rev. Lett. 120, 121603 (2018), arXiv:1712.02785; M. Hidding, F. Moriello, arXiv:1712.04441; J. Brödel, C. Duhr, F. Dulat, L. Tancredi, JHEP 05, 093 (2018), arXiv:1712.07089; J. Brödel, C. Duhr, F. Dulat, L. Tancredi, Phys. Rev. D 97, 116009 (2018), arXiv:1712.07095; L. Adams, S. Weinzierl, Phys. Lett. B 781, 270 (2018), arXiv:1802.05020; J. Brödel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, arXiv:1705.089520; S. Groote, J.G.Körner, arXiv:1705.089521; L. Adams, E. Chaubey, S. Weinzierl, arXiv:1705.089522; L. Adams, E. Chaubey, S. Weinzierl, arXiv:1705.089523; R.N. Lee, A.V. Smirnov, V.A. Smirnov, arXiv:1705.089524; J. Brödel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, arXiv:1705.089525, contribution to this volume; L. Adams, S. Weinzierl, arXiv:1705.089526, contribution to this volume; C. Bogner, A. Schweitzer, S. Weinzierl, arXiv:1807.02542 [hep-th], contribution to this volume; P. Vanhove, arXiv:1705.089528 [hep-th], contribution to this volume; K. Acres, D. Broadhurst, contribution to this volume; Y. Zhou, contribution to this volume; R. Bonciani, M. Capozi, P. Caucal, contribution to this volume
  67. 67.
    J. Grigo, J. Hoff, P. Marquard, M. Steinhauser, Nucl. Phys. B 864, 580 (2012), arXiv:1206.3418 [hep-ph]
  68. 68.
    K. Heun, Math. Ann. 33, 161 (1889); A. Ronveaux, ed., Heun’s differential equations (The Clarendon Press Oxford, Oxford, 1995); J. Ablinger et al., in preparationGoogle Scholar
  69. 69.
    C.F. Gauß, Disquisitiones generales circa seriem infinitam  \({\displaystyle 1+{\tfrac{\alpha \beta }{1\cdot \gamma }}\,x +{\tfrac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}}\,x\,x+{\text{etc.}}}\), Commentationes societatis regiae scientarum Gottingensis recentiores (1813)Google Scholar
  70. 70.
    F. Klein, Vorlesungen über die hypergeometrische Funktion, Wintersemester 1893/1894, Die Grundlehren der Mathematischen Wissenschaften 39, (Springer, Berlin, 1933); W.N. Bailey, Generalized Hypergeometric Series, (Cambridge University Press, Cambridge, 1935); P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hyperspériques, Polynomes D’ Hermite, (Gauthier-Villars, Paris, 1926); P. Appell, Les Fonctions Hypergëométriques de Plusieur Variables, (Gauthier-Villars, Paris, 1925); J. Kampé de Fériet, La fonction hypergëométrique,(Gauthier-Villars, Paris, 1937); H. Exton, Multiple Hypergeometric Functions and Applications, (Ellis Horwood, Chichester, 1976); H. Exton, Handbook of Hypergeometric Integrals, (Ellis Horwood, Chichester, 1978); H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, (Ellis Horwood, Chicester, 1985); M.J. Schlosser, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, C. Schneider, J. Blümlein, Eds., p. 305, (Springer, Wien, 2013), arXiv:1305.1966 [math.CA]
  71. 71.
    L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966)zbMATHGoogle Scholar
  72. 72.
    E.E. Kummer, Journal, für die reine und angew. Mathematik (Crelle) 15(39), 127 (1836)Google Scholar
  73. 73.
    B. Riemann, Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 7, 3 (1857)Google Scholar
  74. 74.
    É. Goursat, Annales Scientifiques de l’École Normale Supérieure 10, 3 (1881)Google Scholar
  75. 75.
    K. Takeuchi, J. Fac. Sci, Univ. Tokyo, Sect 1A(24), 201 (1977)Google Scholar
  76. 76.
    E. Imamoglu, M. van Hoeij, J. Symbolic Comput. 83, 245 (2017)Google Scholar
  77. 77.
    M. van Hoeij, talk at this conference. https://indico.desy.de/indico/event/18291/
  78. 78.
    F.G. Tricomi, Elliptische Funktionen, (Geest & Portig, Leipzig, 1948); übersetzt und bearbeitet von M. Krafft, E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, (Cambridge University Press, Cambridge, 1996); reprint of the 4th edn (1927)Google Scholar
  79. 79.
    S. Herfurtner, Math. Ann. 291, 319 (1991)Google Scholar
  80. 80.
    H. Movasati, S. Reiter, Bull. Braz. Math Soc. 43, 423 (2012)Google Scholar
  81. 81.
    S.A. Abramov, M. Petkovšek, Proceedings of ISSAC 1994, 169–171, (ACM Press, New York, 1994)Google Scholar
  82. 82.
    M. van der Put, M.F. Singer, Galois Theory of Difference Equations, Lecturer Notes in Mathematics, vol. 1666 (Springer, Berlin, 1997)Google Scholar
  83. 83.
    T. Gehrmann, E. Remiddi, Comput. Phys. Commun. 141, 296 (2001), arXiv:0107173 [hep-ph/0107173]
  84. 84.
    J. Ablinger, J. Blümlein, M. Round, C. Schneider, PoS (RADCOR), 010 (2017), arXiv:1712.08541 [hep-th]; arXiv:1809.07084 [hep-ph]
  85. 85.
    G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979)Google Scholar
  86. 86.
    J. Vollinga, S. Weinzierl, Comput. Phys. Commun. 167, 177 (2005), arXiv:0410259 [hep-ph/0410259]
  87. 87.
    J. Blümlein, Comput. Phys. Commun. 133, 76 (2000), arXiv:0003100 [hep-ph/0003100]; J. Blümlein, S.O. Moch, Phys. Lett. B 614, 53 (2005), arXiv:0503188 [hep-ph/0503188]; J. Blümlein, Comput. Phys. Commun. 180, 22188 (2009), arXiv:0901.3106 [hep-ph]; J. Blümlein, Clay Math. Proc. 12, 167 (2010), arXiv:0901.0837 [math-ph]; A.V. Kotikov, V.N. Velizhanin, arXiv:0501274 hep-ph/0501274
  88. 88.
    J. Serre, A Course in Arithmetic (Springer, Berlin, 1973)CrossRefGoogle Scholar
  89. 89.
    H. Cohen, F. Strömberg, Modular Forms, A Classical Approach, Graduate studies in mathematics, vol. 179 (AMS, Providence,RI, 2017); H. Cohen, Expansions at Cusps and Petersson Products in Pari/GP, contribution to this volumeGoogle Scholar
  90. 90.
    F. Klein, R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, 1, 2, (Teubner, Leipzig, 1890, 1892); R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Vol. I–III. Vol. I and II (B.G. Teubner, Leipzig, 1916, 1922) reprinted by (Springer, Berlin, 2011); Vol. III, ed. by C. Adelmann, J. Elstrodt, E. Klimenko, (Springer, Berlin, 2012)Google Scholar
  91. 91.
    M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen (Spriner, Berlin, 2007). 2. AuflageGoogle Scholar
  92. 92.
    H. Rademacher, Topics in Analytic Number Theory (Springer, Berlin, 1973)CrossRefGoogle Scholar
  93. 93.
    T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Springer, Berlin, 1990)CrossRefGoogle Scholar
  94. 94.
    G. Köhler, Eta products and Theta Series Identities, (Springer, Berlin, 2011). Math. Scand. 66, 14 (1990)Google Scholar
  95. 95.
    K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and \(q\)-series, CBMS Regional Conference Series in Mathematics, 102 (AMS, Providence, 2004)Google Scholar
  96. 96.
    F. Diamond, J. Shurman, A First Course in Modular Forms (Springer, Berlin, 2005)Google Scholar
  97. 97.
    K. Martin, Modular Forms, Lecture Notes (2016); U. Oklahoma, http://www2.math.ou.edu/~kmartin/mfs/
  98. 98.
    H. Hida, Elementary Theory of \(L\)-Functions and Eisenstein Series (Cambridge University Press, Cambridge, 1993)Google Scholar
  99. 99.
    H. Iwaniec, Topics in Classical Automorphic Forms (AMS, Providence, 1997)Google Scholar
  100. 100.
    L.J.P. Kilford, Modular Forms, 2nd edn. (Imperial College Press, London, 2015)Google Scholar
  101. 101.
    A.W. Knapp, Elliptic Curves (Princeton University Press, Princeton, 1992)Google Scholar
  102. 102.
    M.I. Knopp, Modular Functions in Analytic Number Theory (Markham Publ. Co., Chicago, IL, 1970)Google Scholar
  103. 103.
    R.A. Rankin, Modular Forms and Modular Functions (Cambridge University Press, Cambridge, 1977)Google Scholar
  104. 104.
    G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, Princeton, 1971)Google Scholar
  105. 105.
    E. Hecke, Math. Annalen 97, 210 (1927); Kgl. Danske Vidensk. Selskab, Math.-fys. medd. 17, 1 (1940); Mathematische Werke, p. 789, (Vandenhoeck u. Ruprecht, Göttingen, 1997), 3. Auflage; J. Sturm, in Number theory, New York, 1984–1985, Lecture Notes in Math. 1240 (Springer, Berlin, 1987), p. 789; H. Petersson, Modulfunktionen und quadratische Formen (Springer, Berlin, 1982)Google Scholar
  106. 106.
    J.S. Milne, Modular Functions and Modular Forms (Elliptic Modular Curves) (2012), p. 138. http://www.jmilne.org/math/CourseNotes/mf.html
  107. 107.
    B. Schoenenberg, Elliptic Modular Functions (Springer, Berlin, 1974)Google Scholar
  108. 108.
    T. Miyake, Modular Forms, 2nd edn. (Springer, Berlin, 2005)Google Scholar
  109. 109.
    A. Ogg, Modular Forms and Dirichlet Series (Benjamin, New York, 1969)Google Scholar
  110. 110.
    D. Zagier, Elliptic modular forms and their applications, in: The 1-2-3 of Modular Forms, Springer, Berlin, 2008zbMATHGoogle Scholar
  111. 111.
    R. Dedekind, Journal für die reine und angewandte Mathematik (Crelle) 83, 265 (1877); in Gesammelte mathematische Werke, ed. R. Fricke, E. Noether, Ø. Ore, (Viehweg und Sohn, Braunschweig, 1930) XIV. Schreiben an Herrn Borchhardt über die Theorie der elliptischen Modulfunktionen, p. 174; Erläuterungen zu den Fragmenten XXVIII, p. 454 (p. 486), in B. Riemann, Gesammelte Mathematische Werke, Wissenschaftlicher Nachlaß und Nachträge, nach der Ausgabe von H. Weber und R. Dedekind neu herausgegeben von R. Narasimhan, (Springer, Berlin, 1990) und (Teubner, Leipzig, 1990)Google Scholar
  112. 112.
    G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th edn. (Oxford, Calendron Press, 2008)Google Scholar
  113. 113.
    SageMath version 7.5.1, Release Date:2017-01-15. http://www.sagemath.org/de/. W. Stein, The modular forms data base. http://wstein.org/Tables
  114. 114.
    J.H. Lambert, Anlage zur Architectonic oder Theorie des Ersten und des Einfachen in der philosophischen und der mathematischen Erkenntniß, (Johann Friedrich Hartknoch, Riga, 1771), 2, §875, p. 506Google Scholar
  115. 115.
    B. Eisenstein, Mathematische Abhandlungen, (Berlin, G. Reimer, 1847), pp. 213—334; Journal für die reine und angewandte. Mathematik (Crelle) 35, 153 (1847)Google Scholar
  116. 116.
    S.J. Bloch, Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves, CRM Monograph Series, (AMS, New York, 2000). The lectures were delivered in 1978; D. Zagier, Math. Ann. (1990) 613; A. Beilinson, A. Levin, Proceedings of Symposia in Pure Mathematics, 55, 126 (1994) part 2; A. Levin, Compositio Math. 106, 267 (1997); J. Wildeshaus, Realizations of Polylogarithms, Lect. Notes Math. 1650, (Springer, Berlin 1997); H. Gangl, D. Zagier, in The arithmetic and geometry of algebraic cycles, Banff, AB, 1998, NATO Science Series C, Mathematical and Physical Sciences, 548, 561 (Kluwer Academic Publishers, Dordrecht, 2000); A. Levin, G. Racinet, Towards multiple elliptic polylogarithms, arXiv:math/0703237; F. Brown, A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917 [math.NT]arXiv:1110.6917[math.NT]
  117. 117.
    C.G.J. Jacobi, Gesammelte Werke, 7 Bände, Eds. K.W. Borchardt, A. Clebsch, K. Weierstraß, on order of the Prussian Academy of Sciences, (Reimer, Berlin, 1881–1891), 1,2 (1881/1882)Google Scholar
  118. 118.
    A. Erdélyi et al., Higher Transcendental Functions, vol. 2 (McGraw-Hill, New York, 1953)Google Scholar
  119. 119.
    L.M. Milne-Thomson, 17. Elliptic Integrals, in Handbook of Mathematical Functions, ed. by 10th, M. Abramowitz, I.A. Stegun, (NBS, Washington, 1972, p. p. printing)Google Scholar
  120. 120.
    A.M. Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, 1, 2 (Paris, Imprimerie De Huzard-Courcier,1825-1826), ibid. Supplement, 3 (1828)Google Scholar
  121. 121.
    A.M. Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, Supplement, (Paris, Imprimerie De Huzard-Courcier, 1828), 3, \(1^{\text{ er }}\) Suppement, p. 65, 70Google Scholar
  122. 122.
    C.G.J. Jacobi, Astronomische Nachrichten (Schumacher) 6, Nr. 127; and., [117], 1, 39 (1827)Google Scholar
  123. 123.
    J. Landen, Phil. Trans. 65, 283 (1775); C.F. Gauß, in Werke, herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, (Dietrich, Göttingen, 1866); Arithmetisch geometrisches Mittel, 3, 361Google Scholar
  124. 124.
    A. Cayley, Phil. Trans R. Soc. Lond. 164, 379 (1874)Google Scholar
  125. 125.
    R.S. Maier, J. Ramanujan Math. Soc. 24, 1 (2009), arXiv:math/0611041
  126. 126.
    J.M. Borwein, P.B. Borwein, Trans. Am. Math. Soc. No. 2, 691 (1991)Google Scholar
  127. 127.
    G.S. Joyce, J. Phys. A 31, 4105 (1998)Google Scholar
  128. 128.
    The on-line encyclopedia of integer sequences, founded by N.J.A. Sloane (1994). https://oeis.org/?language=german
  129. 129.
    M.J.G. Veltman, Nucl. Phys. B 123, 89 (1977)Google Scholar
  130. 130.
    D.A. Ross, M.J.G. Veltman, Nucl. Phys. B 95, 135 (1975)Google Scholar
  131. 131.
    L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, Phys. Lett. B 336, 560 (1994). Erratum: [Phys. Lett. B 349, 597 (1995)], arXiv:9406363 [hep-ph/9406363]
  132. 132.
    K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Phys. Lett. B 351, 331 (1995), arXiv:9502291 [hep-ph/9502291]
  133. 133.
    R. Boughezal, J.B. Tausk, J.J. van der Bij, Nucl. Phys. B 713, 278 (2005), arXiv:0410216 [hep-ph/0410216]
  134. 134.
    K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhöfer, C. Sturm, Phys. Rev. Lett. 97, 102003 (2006), arXiv:0605201 [hep-ph/0605201]
  135. 135.
    R. Boughezal, M. Czakon, Nucl. Phys. B 755, 221 (2006), arXiv:0606232 [hep-ph/0606232]
  136. 136.
    E.W. Barnes, Q. J. Math. 41, 136 (1910); H. Mellin, Math. Ann. 68(3), 305 (1910)Google Scholar
  137. 137.
    J. Blümlein, S. Klein, C. Schneider, F. Stan, J. Symbolic Comput. 47, 1267 (2012), arXiv:1011.2656 [cs.SC]
  138. 138.
    R.E. Cutkosky, J. Math. Phys. 1, 429 (1960); M.J.G. Veltman, Physica 29, 186 (1963); E. Remiddi, Helv. Phys. Acta 54, 364 (1982); E. Remiddi, Differential Equations and Dispersion Relations for Feynman Amplitudes, contribution to this volume; E. Remiddi, Generalised cuts and Wick Rotations, PoS (LL2018), 086Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronZeuthenGermany

Personalised recommendations