Advertisement

Some Algebraic and Arithmetic Properties of Feynman Diagrams

  • Yajun ZhouEmail author
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

This article reports on some recent progresses in Bessel moments, which represent a class of Feynman diagrams in 2-dimensional quantum field theory. Many challenging mathematical problems on these Bessel moments have been formulated as a vast set of conjectures, by David Broadhurst and collaborators, who work at the intersection of high energy physics, number theory and algebraic geometry. We present the main ideas behind our verifications of several such conjectures, which revolve around linear and non-linear sum rules of Bessel moments, as well as relations between individual Feynman diagrams and critical values of modular L-functions.

Notes

Acknowledgements

This research was supported in part by the Applied Mathematics Program within the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

My work on Bessel moments and modular forms began in 2012, in the form of preliminary research notes at Princeton. I thank Prof. Weinan E (Princeton University and Peking University) for running seminars on mathematical problems in quantum field theory at Princeton, and for arranging my stays at both Princeton and Beijing.

I am grateful to Dr. David Broadhurst for fruitful communications on recent progress in the arithmetic studies of Feynman diagrams [9, 10, 11, 12, 14]. It is a pleasure to dedicate this survey to him, in honor of his 70th birthday.

References

  1. 1.
    D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, Elliptic integral evaluations of Bessel moments and applications. J. Phys. A 41(20), 205203 (46pp) (2008), arXiv:0801.0891v2 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Barth, I. Nieto, Abelian surfaces of type \((1,3)\) and quartic surfaces with \(16\) skew lines. J. Algebr. Geom. 3(2), 173–222 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions. Compos. Math. 151(12), 2329–2375 (2015), arXiv:1406.2664v3 [hep-th]MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J.M. Borwein, B. Salvy, A proof of a recurrence for Bessel moments. Exp. Math. 17(2), 223–230 (2008), arXiv:0706.1409v2 [cs.SC]MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J.M. Borwein, A. Straub, C. Vignat. Densities of short uniform random walks in higher dimensions. J. Math. Anal. Appl. 437(1), 668–707 (2016), arXiv:1508.04729v1 [math.CA]MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    J.M. Borwein, A. Straub, J. Wan, W. Zudilin, Densities of short uniform random walks. Can. J. Math. 64(5), 961–990 (2012), (With an appendix by Don Zagier) arXiv:1103.2995v2 [math.CA]MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J.M. Borwein, D. Nuyens, A. Straub, J. Wan, Some arithmetic properties of random walk integrals. Ramanujan J. 26, 109–132 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J.M. Borwein, A. Straub, J. Wan, Three-step and four-step random walk integrals. Exp. Math. 22(1), 1–14 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Broadhurst, \({L}\)-series from Feynman diagrams with up to 22 loops, in Workshop on Multi-loop Calculations: Methods and Applications, Séminaires Internationaux de Recherche de Sorbonne Universités, Paris, France, 7 June 2017, https://multi-loop-2017.sciencesconf.org/data/program/Broadhurst.pdf
  10. 10.
    D. Broadhurst, Combinatorics of Feynman integrals, in Combinatoire Algébrique, Résurgence, Moules et Applications, Centre International de Rencontres Mathématiques, Marseille-Luminy, France, 28 June 2017, http://library.cirm-math.fr/Record.htm?idlist=29&record=192828141249100 00969
  11. 11.
    D. Broadhurst, Combinatorics of Feynman integrals, in Programme on Algorithmic and Enumerative Combinatorics, Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, 17 October 2017, http://www.mat.univie.ac.at/~kratt/esi4/broadhurst.pdf
  12. 12.
    D. Broadhurst, Feynman integrals, \({L}\)-series and Kloosterman moments, in Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, KMPB Conference at DESY, Zeuthen, Germany, 23 October 2017, https://indico.desy.de/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=18291
  13. 13.
    D. Broadhurst, Feynman integrals, \({L}\)-series and Kloosterman moments. Commun. Number Theory Phys. 10(3), 527–569 (2016), arXiv:1604.03057v1 [physics.gen-ph]
  14. 14.
    D. Broadhurst, Feynman integrals, beyond polylogs, up to 22 loops, in Amplitudes 2017, Higgs Centre for Theoretical Physics, Edinburgh, Scotland, UK, 12 July 2017, https://indico.ph.ed.ac.uk/event/26/contribution/21/material/slides/0.p df
  15. 15.
    D. Broadhurst, Multiple zeta values and modular forms in quantum field theory, in Computer Algebra in Quantum Field Theory. Texts and Monographs in Symbolic Computation, ed. by C. Schneider, J. Blümlein (Springer, Vienna, 2013), pp. 33–73, https://link.springer.com/chapter/10.1007%2F978-3-7091-1616-6_2zbMATHGoogle Scholar
  16. 16.
    D. Broadhurst, Reciprocal PSLQ and the tiny nome of Bologna, in International Workshop Frontiers in Perturbative Quantum Field Theory, Zentrum für interdisziplinäre Forschung in Bielefeld, Germany, 14 June 2007, http://www.physik.uni-bielefeld.de/igs/schools/ZiF2007/Broadhurst.pdf
  17. 17.
    D. Broadhurst, A. Mellit, Perturbative quantum field theory informs algebraic geometry, in Loops and Legs in Quantum Field Theory. PoS (LL2016) 079 (2016), https://pos.sissa.it/archive/conferences/260/079/LL2016_079.pdf
  18. 18.
    D. Broadhurst, O. Schnetz, Algebraic geometry informs perturbative quantum field theory, in Loops and Legs in Quantum Field Theory. PoS (LL2014) 078 (2014)Google Scholar
  19. 19.
    M. Bronstein, T. Mulders, J.-A. Weil, On symmetric powers of differential operators, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI) (ACM, New York, 1997), pp. 156–163Google Scholar
  20. 20.
    H.H. Chan, W. Zudilin, New representations for Apéry-like sequences. Mathematika 56(1), 107–117 (2010)zbMATHCrossRefGoogle Scholar
  21. 21.
    P. Deligne, Cohomologie étale, vol. 569, Lecture Notes in Mathematics (Springer, Berlin, 1977)zbMATHCrossRefGoogle Scholar
  22. 22.
    P. Deligne, La conjecture de Weil. I. Inst. Ht. Études Sci. Publ. Math. 43, 273–307 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    F. Diamond, J. Shurman, A First Course in Modular Forms, vol. 228, Graduate Texts in Mathematics (Springer-Verlag, New York, NY, 2005)Google Scholar
  24. 24.
    B. Dwork, On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    R. Evans, Seventh power moments of Kloosterman sums. Isr. J. Math. 175, 349–362 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    R. Fricke, Die elliptischen Funktionen und ihre Anwendungen (Die funktionentheoretischen und analytischen Grundlagen. B. G. Teubner, Leipzig, Germany), (Erster Teil, 1916)Google Scholar
  27. 27.
    L. Fu, D. Wan, \(L\)-functions for symmetric products of Kloosterman sums. J. Reine Angew. Math. 589, 79–103 (2005)Google Scholar
  28. 28.
    L. Fu, D. Wan, \(L\)-functions of symmetric products of the Kloosterman sheaf over \({ Z}\). Math. Ann. 342(2), 387–404 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    L. Fu, D. Wan, Trivial factors for \(L\)-functions of symmetric products of Kloosterman sheaves. Finite Fields Appl. 14(2), 549–570 (2008)Google Scholar
  30. 30.
    V. Gritsenko, K. Hulek. The modular form of the Barth–Nieto quintic. Int. Math. Res. Notices, (17), 915–937 (1999, arXiv:math/9806011v1 [math.AG]
  31. 31.
    S. Groote, J.G.Körner, A.A. Privovarov, On the evaluation of a certain class of Feynman diagrams in \(x\)-space: sunrise-type topologies at any loop order. Ann. Phys. 322, 2374–2445 (2007), arXiv:hep-ph/0506286v1MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    A. Grothendieck, Cohomologie\(l\)-adique et fonctions\(L\), Lecture Notes in Mathematics, vol. 589 (Springer, Berlin, 1977)Google Scholar
  33. 33.
    A. Grothendieck, Formule de Lefschetz et rationalité des fonctions \(L\), Dix Exposés sur la Cohomologie des Schémas, Advanced Studies in Pure Mathematics, vol. 3 (North-Holland, Amsterdam, 1968), pp. 31–45Google Scholar
  34. 34.
    K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modularity of the Barth–Nieto quintic and its relatives. Adv. Geom. 1(3), 263–289 (2001), arXiv:math/0010049v1 [math.AG]
  35. 35.
    J.C. Kluyver, A local probability problem. Nederl. Akad. Wetensch. Proc. 8, 341–350 (1905), http://www.dwc.knaw.nl/DL/publications/PU00013859.pdf
  36. 36.
    S. Laporta, Analytical expressions of three- and four-loop sunrise Feynman integrals and four-dimensional lattice integrals. Int. J. Modern Phys. A 23(31), 5007–5020 (2008), arXiv:0803.1007v4 [hep-ph]MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    S. Laporta, High-precision calculation of the 4-loop contribution to the electron \(g-2\) in QED. Phys. Lett. B 772(Supplement C), 232–238 (2017), arXiv:1704.06996 [hep-th]
  38. 38.
    C. Peters, J. Top, M. van der Vlugt, The Hasse zeta function of a \(K3\) surface related to the number of words of weight \(5\) in the Melas codes. J. Reine Angew. Math. 432, 151–176 (1992)MathSciNetzbMATHGoogle Scholar
  39. 39.
    P. Robba, Symmetric powers of the \(p\)-adic Bessel equation. J. Reine Angew. Math. 366, 194–220 (1986)MathSciNetzbMATHGoogle Scholar
  40. 40.
    M.D. Rogers, New \(_5F_4\) hypergeometric transformations, three-variable Mahler measures, and formulas for \(1/\pi \). Ramanujan J. 18(3), 327–340 (2009), arXiv:0704.2438v4 [math.NT]
  41. 41.
    M. Rogers, J.G. Wan, I.J. Zucker, Moments of elliptic integrals and critical \({L}\)-values. Ramanujan J. 37(1), 113–130 (2015), arXiv:1303.2259v2 [math.NT]
  42. 42.
    D. Samart, Feynman integrals and critical modular \(L\)-values. Commun. Number Theory Phys. 10(1), 133–156 (2016), arXiv:1511.07947v2 [math.NT]MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    N.J.A. Sloane, Sequence A262961 — Crandall numbers. The On-line Encyclopedia of Integer Sequences. https://oeis.org/A262961. Accessed Apr and Oct 2017
  44. 44.
    P. Vanhove, The physics and the mixed Hodge structure of Feynman integrals, String-Math 2013, Proceedings of Symposia in Pure Mathematics, vol. 88 (American Mathematical Society, Providence, 2014), pp. 161–194, arXiv:1401.6438 [hep-th]
  45. 45.
    H.A. Verrill, Root lattices and pencils of varieties. J. Math. Kyoto Univ. 36(2), 423–446 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, Cambridge, 1944)zbMATHGoogle Scholar
  47. 47.
    Z. Yun, Galois representations attached to moments of Kloosterman sums and conjectures of Evans. Compos. Math. 151(1), 68–120 (2015), (Appendix B by Christelle Vincent) arXiv:1308.3920v2 [math.NT]MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Y. Zhou, Hilbert transforms and sum rules of Bessel moments. Ramanujan J. (2017) (to appear).  https://doi.org/10.1007/s11139-017-9945-y, arXiv:1706.01068 [math.CA]MathSciNetCrossRefGoogle Scholar
  49. 49.
    Y. Zhou, On Borwein’s conjectures for planar uniform random walks (2017), arXiv:1708.02857 [math.CA]
  50. 50.
    Y. Zhou, On Laporta’s 4-loop sunrise formulae. Ramanujan J . (2018) (to appear). https://doi.org/10.1007/s11139-018-0090-z, arXiv:1801.02182 [math.CA]
  51. 51.
    Y. Zhou, Two definite integrals involving products of four Legendre functions. Ramanujan J. 45(2), 299–317 (2018), arXiv:1603.03547v2 [math.CA]MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Y. Zhou, Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. Commun. Number Theory Phys. 12(1), 127–192 (2018), arXiv:1706.08308 [math.NT]MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Y. Zhou, Wrońskian factorizations and Broadhurst–Mellit determinant formulae. Commun. Number Theory Phys. 12(2), 355–407 (2018), arXiv:1711.01829 [math.CA]MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Program in Applied and Computational Mathematics (PACM)Princeton UniversityPrincetonUSA
  2. 2.Academy of Advanced Interdisciplinary Studies (AAIS)Peking UniversityBeijingPeople’s Republic of China

Personalised recommendations