Towards a Symbolic Summation Theory for Unspecified Sequences

  • Peter Paule
  • Carsten SchneiderEmail author
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


The article addresses the problem whether indefinite double sums involving a generic sequence can be simplified in terms of indefinite single sums. Depending on the structure of the double sum, the proposed summation machinery may provide such a simplification without exceptions. If it fails, it may suggest a more advanced simplification introducing in addition a single nested sum where the summand has to satisfy a particular constraint. More precisely, an explicitly given parameterized telescoping equation must hold. Restricting to the case that the arising unspecified sequences are specialized to the class of indefinite nested sums defined over hypergeometric, multi-basic or mixed hypergeometric products, it can be shown that this constraint is not only sufficient but also necessary.



We would like to thank Christian Krattenthaler for inspiring discussions. Special thanks go to Bill Chen and his collaborators at the Center of Applied Mathematics at the Tianjin University for overwhelming hospitality in the endspurt phase of writing up this paper. We are especially grateful for all the valuable and detailed suggestions of the referee that improved substantially the quality of this article.


  1. 1.
    J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(062305), 1–55 (2018), arXiv:1706.01299 [hep-th]MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Ablinger, C. Schneider, Algebraic independence of sequences generated by (cyclotomic) harmonic sums. Ann. Comb. 22(2), 213–244 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S.A. Abramov, On the summation of rational functions. Zh. Vychisl. Mat. Mat. Fiz. 11, 1071–1074 (1971)MathSciNetzbMATHGoogle Scholar
  4. 4.
    S.A. Abramov, Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G.E. Andrews and P. Paule. MacMahon’s partition analysis. IV. Hypergeometric multisums. Sém. Lothar. Combin. 42:Art. B42i, 24 (1999). The Andrews Festschrift (Maratea, 1998)Google Scholar
  6. 6.
    A. Bauer, M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symb. Comput. 28(4–5), 711–736 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R.W. Gosper, Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A. 75, 40–42 (1978)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Karr, Summation in finite terms. J. ACM 28, 305–350 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Karr, Theory of summation in finite terms. J. Symb. Comput. 1, 303–315 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Kauers, C. Schneider, in Application of Unspecified Sequences in Symbolic Summation, Proceedings of the ISSAC’06, ed. by J.G. Dumas (ACM Press, 2006), pp. 177–183Google Scholar
  11. 11.
    M. Kauers, C. Schneider, Indefinite summation with unspecified summands. Discret. Math. 306(17), 2021–2140 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E.D. Ocansey, C. Schneider, Representing (q-)hypergeometric products and mixed versions in difference rings, in Advances in Computer Algebra. WWCA 2016. Springer Proceedings in Mathematics and Statistics, vol. 226. ed. by C. Schneider, E. Zima (Springer, 2018), pp. 175–213, arXiv:1705.01368 [cs.SC]
  13. 13.
    P. Paule, M. Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20(5–6) (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Petkovšek, H.S. Wilf, D. Zeilberger, \(A=B\) (A K Peters, Wellesley, 1996)Google Scholar
  15. 15.
    C. Schneider, Simplifying sums in \(\varPi \varSigma \)-extensions. J. Algebra Appl. 6(3), 415–441 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Schneider, Symbolic summation assists combinatorics. Sem. Lothar. Combin. 56, Article B56b, 1–36 (2007)Google Scholar
  17. 17.
    C. Schneider, A refined difference field theory for symbolic summation. J. Symb. Comput. 43(9), 611–644 (2008), arXiv:0808.2543 [cs.SC]MathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Schneider, Structural theorems for symbolic summation. Appl. Algebra Eng. Commun. Comput. 21(1), 1–32 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Schneider, A streamlined difference ring theory: indefinite nested sums, the alternating sign and the parameterized telescoping problem, in Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 15t0h International Symposium, ed. by F. Winkler, V. Negru, T. Ida, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (IEEE Computer Society, 2014), pp. 26–33, arXiv:1412.2782v1 [cs.SC]
  20. 20.
    C. Schneider, Fast algorithms for refined parameterized telescoping in difference fields, in Computer Algebra and Polynomials, Applications of Algebra and Number Theory. Lecture Notes in Computer Science (LNCS), vol. 8942, ed. by J. Gutierrez, J. Schicho, M. Weimann (Springer, Berlin, 2015), pp. 157–191, arXiv:1307.7887 [cs.SC]Google Scholar
  21. 21.
    C. Schneider, A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82–127 (2016), arXiv:1408.2776 [cs.SC]MathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Schneider, Summation theory II: characterizations of \(R\varPi \varSigma \)-extensions and algorithmic aspects. J. Symb. Comput. 80(3), 616–664 (2017), arXiv:1603.04285 [cs.SC]
  23. 23.
    M. van der Put, M.F. Singer, Galois Theory of Difference Equations. Lecture Notes in Mathematics, vol. 1666 (Springer, Berlin, 1997)Google Scholar
  24. 24.
    D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80(2), 207–211 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityLinzAustria

Personalised recommendations