Interpolated Sequences and Critical L-Values of Modular Forms

  • Robert Osburn
  • Armin StraubEmail author
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


Recently, Zagier expressed an interpolated version of the Apéry numbers for \(\zeta (3)\) in terms of a critical L-value of a modular form of weight 4. We extend this evaluation in two directions. We first prove that interpolations of Zagier’s six sporadic sequences are essentially critical L-values of modular forms of weight 3. We then establish an infinite family of evaluations between interpolations of leading coefficients of Brown’s cellular integrals and critical L-values of modular forms of odd weight.



The first author would like to thank the Hausdorff Research Institute for Mathematics in Bonn, Germany for their support as this work began during his stay from January 2–19, 2018 as part of the Trimester Program “Periods in Number Theory, Algebraic Geometry and Physics”. He also thanks Masha Vlasenko for her support and encouragement during the initial stages of this project. The authors are particularly grateful to Wadim Zudilin for sharing his proof of Theorem 2 for sequence \(\varvec{F}\).


  1. 1.
    S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999). Developmental Math, vol. 4 (Kluwer Academic Publishers, Dordrecht, 2001), pp. 1–12Google Scholar
  2. 2.
    S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 2000(518), 187–212 (2000)CrossRefGoogle Scholar
  3. 3.
    G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, in Mirror Symmetry. V. AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 481–515 (American Mathematical Society, Providence, 2006)Google Scholar
  4. 4.
    G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  5. 5.
    R. Apéry, Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)zbMATHGoogle Scholar
  6. 6.
    T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edn. (Springer, New York, 1990)CrossRefGoogle Scholar
  7. 7.
    M.-J. Bertin, A. Feaver, J. Fuselier, M. Lalín, M. Manes, Mahler measure of some singular \(K3\)-surfaces, in Women in Numbers 2: Research Directions in Number Theory. Contemporary Mathematics, vol. 606 (American Mathematical Society, Providence, 2013), pp. 149–169Google Scholar
  8. 8.
    F. Beukers, A note on the irrationality of \(\zeta (2)\) and \(\zeta (3)\). Bull. Lond. Math. Soc. 3(11), 268–272 (1979)CrossRefGoogle Scholar
  9. 9.
    F. Beukers, Another congruence for the Apéry numbers. J. Number Theory 25(2), 201–210 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Beukers, On Dwork’s accessory parameter problem. Math. Z. 241(2), 425–444 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.M. Borwein, P.B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)MathSciNetzbMATHGoogle Scholar
  12. 12.
    J.M. Borwein, P.B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (Wiley, New York, 1998)Google Scholar
  13. 13.
    F. Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties. Mosc. J. Comb. Number Theory 6(2–3), 102–165 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    H.H. Chan, Y. Tanigawa, Y. Yang, W. Zudilin, New analogues of Clausen’s identities arising from the theory of modular forms. Adv. Math. 228(2), 1294–1314 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Cohen, Number Theory, Volume II: Analytic and Modern Tools (Springer, New York, 2007)Google Scholar
  16. 16.
    S. Cooper, Sporadic sequences, modular forms and new series for \(1/\pi \). Ramanujan J. 29(1–3), 163–183 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R.M. Damerell, L-functions of elliptic curves with complex multiplication. I. Acta Arith. 17(3), 287–301 (1970)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Formichella, A. Straub, Gaussian binomial coefficients with negative arguments. Preprint, Feb. 2018, arXiv:1802.02684
  19. 19.
    S. Fukuhara, Y. Yang, Bases for \(S_k(1(4))\) and formulas for even powers of the Jacobi theta function. Int. J. Number Theory 9(8), 1973–1993 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen. Math. Ann. 51, 199–226 (1899)Google Scholar
  21. 21.
    N. Koblitz, \(p\)-adic Numbers, \(p\)-adic Analysis, and Zeta Functions, 2nd edn. (Springer, New York, 1984)Google Scholar
  22. 22.
    M. Kontsevich, D. Zagier, Periods, in Mathematics Unlimited–2001 and Beyond (Springer, Berlin, 2001), pp. 771–808CrossRefGoogle Scholar
  23. 23.
    C. Koutschan, Advanced Applications of the Holonomic Systems Approach. Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2009)Google Scholar
  24. 24.
    J.-J. Lee, M.R. Murty, D. Park, Generalization of a theorem of Hurwitz. J. Ramanujan Math. Soc. 31(3), 215–226 (2016)MathSciNetGoogle Scholar
  25. 25.
    W.-C.W. Li, L. Long, Atkin and Swinnerton-Dyer congruences and noncongruence modular forms. RIMS Kôkyûroku Bessatsu B51, 269–299 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    D. Loeb, Sets with a negative number of elements. Adv. Math. 91(1), 64–74 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. McCarthy, R. Osburn, A. Straub, Sequences, modular forms and cellular integrals. Math. Proc. Cambridge Philos. Soc. (2018). arXiv:1705.05586
  28. 28.
    R. Osburn, A. Straub, W. Zudilin, A modular supercongruence for \(_6F_5\): an Apéry-like story. Ann. Inst. Fourier (Grenoble) 68(5), 1987–2004 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Rogers, J.G. Wan, I.J. Zucker, Moments of elliptic integrals and critical \(L\)-values. Ramanujan J. 37(1), 113–130 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Schütt, CM newforms with rational coefficients. Ramanujan J. 19(2), 187–205 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227, 86–110 (1967)MathSciNetzbMATHGoogle Scholar
  32. 32.
    G. Shimura, The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math. 29(6), 783–804 (1976)MathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Shimura, On the periods of modular forms. Math. Ann. 229(3), 211–221 (1977)MathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Stienstra, F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271(2), 269–304 (1985)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of \(\zeta \) (3). Math. Intell. 1(4), 195–203 (1979)Google Scholar
  36. 36.
    H.A. Verrill, Congruences related to modular forms. Int. J. Number Theory 6(6), 1367–1390 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G.N. Watson, Three triple integrals. Quart. J. Math., Oxford Ser. 10, 266–276 (1939)MathSciNetCrossRefGoogle Scholar
  38. 38.
    D. Zagier, Elliptic modular forms and their applications, The 1-2-3 of Modular Forms (Springer, Berlin, 2008)Google Scholar
  39. 39.
    D. Zagier, Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries, volume 47 of CRM Proc. Lecture Notes (American Mathematical Society, Providence, 2009), pp. 349–366Google Scholar
  40. 40.
    D. Zagier, Arithmetic and topology of differential equations, in Proceedings of the 2016 ECM (2017)Google Scholar
  41. 41.
    I. Zucker, \(70+\) years of the Watson integrals. J. Stat. Phys. 145(3), 591–612 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    W. Zudilin, A hypergeometric version of the modularity of rigid Calabi–Yau manifolds. SIGMA Symmetry Integrability Geom. Methods Appl. 14, paper no. 086, 16pp. (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.Dept. of Mathematics and StatisticsUniversity of South AlabamaMobileUnited States

Personalised recommendations