Advertisement

The Generators of all Polynomial Relations Among Jacobi Theta Functions

  • Ralf HemmeckeEmail author
  • Cristian-Silviu Radu
  • Liangjie Ye
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

In this article, we consider the classical Jacobi theta functions \(\theta _i(z)\), \(i=1,2,3,4\) and show that the ideal of all polynomial relations among them with coefficients in \(K :=\mathbb {Q}(\theta _2(0|\tau ),\theta _3(0|\tau ),\theta _4(0|\tau ))\) is generated by just two polynomials, that correspond to well known identities among Jacobi theta functions.

References

  1. 1.
    F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders (eds.), NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/. Release 1.0.19 of 2018-06-22
  2. 2.
    L. Ye, Elliptic function based algorithms to prove Jacobi theta function relations. J. Symb. Comput. 89, 171–193 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University, Cambridge, 1927). Reprinted 1965Google Scholar
  4. 4.
    Sims C.C, Computation with Finitely Presented Groups. Encyclopedia of Mathematics and Its Applications, vol. 48 (Cambridge University, Cambridge, 1994)Google Scholar
  5. 5.
    B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck, Department of Mathematics, Innsbruck, Austria (1965)Google Scholar
  6. 6.
    T. Becker, V. Weispfenning (in cooperation with H. Kredel), Gröbner Bases. A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141 (Springer, New York, 1993)CrossRefGoogle Scholar
  7. 7.
    R. Hemmecke, S. Radu, Construction of all polynomial relations among Dedekind eta functions of level \({N}\), RISC Report Series 18-03 Research Institute for Symbolic Computation, Johannes Kepler Universität, Linz/A (2018)Google Scholar
  8. 8.
    B.C. Berndt, Ramanujan’s Notebooks (Springer, Berlin, 1997)Google Scholar
  9. 9.
    FriCAS team, Fricas—an advanced computer algebra system. Available at http://fricas.sf.net

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ralf Hemmecke
    • 1
    Email author
  • Cristian-Silviu Radu
    • 1
  • Liangjie Ye
    • 1
  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations