Advertisement

Nanomaterials as an Immobilizing Platform for Enzymatic Glucose Biosensors

  • Devaraj Manoj
  • J. Santhanalakshmi
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

The development of new and innovative matrices for the immobilization of enzymes has attracted remarkable attention, given the increased demand for electrochemical biosensors. Advances in nanomaterials have enabled the design of immobilization matrices for enzymes that can directly improve the sensitivity of enzymatic biosensors at the electrode interface owing to their distinguished structural and physiochemical properties. The enzymes are attached to the electrode surface by either electrostatic or covalent attachment, but retaining the enzyme functionality for a prolonged time at the electrode interface is highly challenging in the implementation of various real-time monitoring devices. This chapter provides an overview of recent developments in electrochemical glucose biosensors based on various nanomaterials. Furthermore, more efficient nanomaterials as electrochemical platforms for electrochemical glucose biosensors are discussed in detail.

Keywords

Biosensor Glucose Modified electrode Enzymatic Nanomaterials 

References

  1. Alwarappan S, Liu C, Kumar A, Li C-Z (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924CrossRefGoogle Scholar
  2. Baby TT, Aravind SJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sensors Actuators B Chem 145:71–77.  https://doi.org/10.1016/j.snb.2009.11.022 CrossRefGoogle Scholar
  3. Barsan MM, Brett CMA (2009) A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose. Bioelectrochemistry 76:135–140.  https://doi.org/10.1016/j.bioelechem.2009.03.004 CrossRefGoogle Scholar
  4. Besteman K, Lee J-O, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730.  https://doi.org/10.1021/nl034139u CrossRefGoogle Scholar
  5. Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778.  https://doi.org/10.1039/c0an00590h CrossRefGoogle Scholar
  6. Brownson DAC, Banks CE (2011) Graphene electrochemistry: fabricating amperometric biosensors. Analyst 136:2084–2089.  https://doi.org/10.1039/c0an00875c CrossRefGoogle Scholar
  7. Brownson DAC, Kampouris DK, Banks CE (2012a) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976.  https://doi.org/10.1039/c2cs35105f CrossRefGoogle Scholar
  8. Brownson DAC, Foster CW, Banks CE (2012b) The electrochemical performance of graphene modified electrodes: an analytical perspective. Analyst 137:1815–1823.  https://doi.org/10.1039/c2an16279b CrossRefGoogle Scholar
  9. Buk V, Emregul E, Emregul KC (2017) Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Mater Sci Eng C Mater Biol Appl 74:307–314.  https://doi.org/10.1016/j.msec.2016.12.003 CrossRefGoogle Scholar
  10. Chaturvedi P, Vanegas DC, Taguchi M, Burrs SL, Sharma P, McLamore ES (2014) A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosens Bioelectron 58:179–185.  https://doi.org/10.1016/j.bios.2014.02.021 CrossRefGoogle Scholar
  11. Chu X, Zhu X, Dong Y, Chen T, Ye M, Sun W (2012) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Electroanal Chem 676:20–26.  https://doi.org/10.1016/j.jelechem.2012.04.009 CrossRefGoogle Scholar
  12. Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233.  https://doi.org/10.1039/c2cs35474h CrossRefGoogle Scholar
  13. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45.  https://doi.org/10.1111/j.1749-6632.1962.tb13623.x CrossRefGoogle Scholar
  14. Crespilho FN, Ghica ME, Florescu M, Nart FC, Oliveira ON Jr, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8:1655–1670.  https://doi.org/10.1016/j.elecom.2006.07.032 CrossRefGoogle Scholar
  15. Cui H-F, Zhang K, Zhang Y-F, Sun Y-L, Wang J, Zhang W-D, Luong JHT (2013) Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens Bioelectron 46:113–118.  https://doi.org/10.1016/j.bios.2013.02.029 CrossRefGoogle Scholar
  16. da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4:778–794.  https://doi.org/10.1002/celc.201600758
  17. Dai X, Wildgoose GG, Salter C, Crossley A, Compton RG (2006) Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Anal Chem 78:6102–6108.  https://doi.org/10.1021/ac060582o CrossRefGoogle Scholar
  18. Devasenathipathy R, Mani V, Chen S-M, Huang S-T, Huang T-T, Lin C-M, Hwa K-Y, Chen T-Y, Chen B-J (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzym Microb Technol 78:40–45.  https://doi.org/10.1016/j.enzmictec.2015.06.006 CrossRefGoogle Scholar
  19. Gallay P, Tosi E, Madrid R, Tirado M, Comedi D (2016) Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode. Nanotechnology 27:425501.  https://doi.org/10.1088/0957-4484/27/42/425501 CrossRefGoogle Scholar
  20. Ghica ME, Pauliukaite R, Fatibello-Filho O, Brett CMA (2009) Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sensors Actuators B Chem 142:308–315.  https://doi.org/10.1016/j.snb.2009.08.012 CrossRefGoogle Scholar
  21. Gupta S, Prabha CR, Murthy CN (2016) Functionalized multi-walled carbon nanotubes/polyvinyl alcohol membrane coated glassy carbon electrode for efficient enzyme immobilization and glucose sensing. J Environ Chem Eng 4:3734–3740.  https://doi.org/10.1016/j.jece.2016.08.021 CrossRefGoogle Scholar
  22. Gutierrez F, Rubianes MD, Rivas GA (2012) Dispersion of multi-wall carbon nanotubes in glucose oxidase: characterization and analytical applications for glucose biosensing. Sensors Actuators B Chem 161:191–197.  https://doi.org/10.1016/j.snb.2011.10.010 CrossRefGoogle Scholar
  23. Haghighi B, Tabrizi MA (2013) Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles. Colloids Surf B Biointerfaces 103:566–571.  https://doi.org/10.1016/j.colsurfb.2012.11.010
  24. Haghighi B, Karimi B, Tavahodi M, Behzadneia H (2014) Electrochemical behavior of glucose oxidase immobilized on Pd-nanoparticles decorated ionic liquid derived fibrillated mesoporous carbon. Electroanalysis 26:2010–2016. https://doi.org/10.1002/elan.201400266Google Scholar
  25. Hahn Y-B, Ahmad R, Tripathy N (2012) Chemical and biological sensors based on metal oxide nanostructures. Chem Commun (Camb) 48:10369–10385.  https://doi.org/10.1039/c2cc34706g
  26. Homma T, Sumita D, Kondo M, Kuwahara T, Shimomura M (2014) Amperometric glucose sensing with polyaniline/poly(acrylic acid) composite film bearing covalently-immobilized glucose oxidase: a novel method combining enzymatic glucose oxidation and cathodic O2 reduction. J Electroanal Chem 712:119–123.  https://doi.org/10.1016/j.jelechem.2013.11.009
  27. Hossain MF, Park JY (2014) Amperometric glucose biosensor based on Pt–Pd nanoparticles supported by reduced graphene oxide and integrated with glucose oxidase. Electroanalysis 26:940–951.  https://doi.org/10.1002/elan.201400018 CrossRefGoogle Scholar
  28. Hua L, Wu X, Wang R (2012) Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode. Analyst 137:5716–5719. https://doi.org/10.1039/c2an35612kCrossRefGoogle Scholar
  29. Hui J, Cui J, Xu G, Adeloju SB, Wu Y (2013) Direct electrochemistry of glucose oxidase based on Nafion–graphene–GOD modified gold electrode and application to glucose detection. Mater Lett 108:88–91.  https://doi.org/10.1016/j.matlet.2013.06.097 CrossRefGoogle Scholar
  30. Jang HD, Kim SK, Chang H, Roh K-M, Choi J-W, Huang J (2012) A glucose biosensor based on TiO2–graphene composite. Biosens Bioelectron 38:184–188. https://doi.org/10.1016/j.bios.2012.05.033CrossRefGoogle Scholar
  31. Jia X, Hu G, Nitze F, Barzegar HR, Sharifi T, Tai C-W, Wågberg T (2013) Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. ACS Appl Mater Interfaces 5:12017–12022. https://doi.org/10.1021/am4037383CrossRefGoogle Scholar
  32. Jiang X, Wu Y, Mao X, Cui X, Zhu L (2011) Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sensors Actuators B Chem 153:158–163. https://doi.org/10.1016/j.snb.2010.10.023Google Scholar
  33. Jung J, Lim S (2013) ZnO nanowire–based glucose biosensors with different coupling agents. Appl Surf Sci 265:24–29. https://doi.org/10.1016/j.apsusc.2012.10.069Google Scholar
  34. Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43:6042–6108. https://doi.org/10.1002/anie.200400651Google Scholar
  35. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44.  https://doi.org/10.1002/elan.200302930 CrossRefGoogle Scholar
  36. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707.  https://doi.org/10.1021/ac202878q CrossRefGoogle Scholar
  37. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768.  https://doi.org/10.1039/c3cs60141b CrossRefGoogle Scholar
  38. Kong F-Y, Gu S-X, Li W-W, Chen T-T, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens Bioelectron 56:77–82.  https://doi.org/10.1016/j.bios.2013.12.067 CrossRefGoogle Scholar
  39. Le Goff A, Holzinger M, Cosnier S (2011) Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 136:1279–1287. https://doi.org/10.1039/c0an00904kGoogle Scholar
  40. Lei Y, Yan X, Luo N, Song Y, Zhang Y (2010) ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange. Colloids Surf A Physicochem Eng Asp 361:169–173.  https://doi.org/10.1016/j.colsurfa.2010.03.029 CrossRefGoogle Scholar
  41. Li J, Yuan R, Chai Y, Che X (2010) Fabrication of a novel glucose biosensor based on Pt nanoparticles–decorated iron oxide–multiwall carbon nanotubes magnetic composite. J Mol Catal B Enzym 66:8–14.  https://doi.org/10.1016/j.molcatb.2010.03.005 CrossRefGoogle Scholar
  42. Li J, Yu J, Wei X, Liu R (2011a) A sensitive and selective biosensor activated by tailor-designed platinum nanoparticles electrodeposited onto a gold microelectrode. J Solid State Electrochem 15:1129–1137.  https://doi.org/10.1007/s10008-010-1178-6 CrossRefGoogle Scholar
  43. Li Z, Wang X, Wen G, Shuang S, Dong C, Paau MC, Choi MMF (2011b) Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor. Biosens Bioelectron 26:4619–4623.  https://doi.org/10.1016/j.bios.2011.04.057 CrossRefGoogle Scholar
  44. Li Y, Wei Y, Shi G, Xian Y, Jin L (2011c) Facile synthesis of leaf-like CuO nanoparticles and their application on glucose biosensor. Electroanalysis 23:497–502.  https://doi.org/10.1002/elan.201000343 CrossRefGoogle Scholar
  45. Li H, He J, Zhao Y, Wu D, Cai Y, Wei Q, Yang M (2011d) Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor. Electrochim Acta 56:2960–2965.  https://doi.org/10.1016/j.electacta.2010.12.098 CrossRefGoogle Scholar
  46. Li W, Yuan R, Chai Y, Zhong H, Wang Y (2011e) Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar–lectin biospecific interactions for the determination of glucose. Electrochim Acta 56:4203–4208.  https://doi.org/10.1016/j.electacta.2011.01.095 CrossRefGoogle Scholar
  47. Li J, Kuang D, Feng Y, Zhang F, Liu M (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176:73–80.  https://doi.org/10.1007/s00604-011-0693-1
  48. Li X, Zhao C, Liu X (2015) A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng 1:19606  https://doi.org/10.1038/micronano.2015.14
  49. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide–based glucose biosensors. Langmuir 26:6158–6160.  https://doi.org/10.1021/la100886x CrossRefGoogle Scholar
  50. Liu S, Tian J, Wang L, Luo Y, Lu W, Sun X (2011) Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosens Bioelectron 26:4491–4496.  https://doi.org/10.1016/j.bios.2011.05.008 CrossRefGoogle Scholar
  51. Liu J, Kong N, Li A, Luo X, Cui L, Wang R, Feng S (2013) Graphene bridged enzyme electrodes for glucose biosensing application. Analyst 138:2567–2575.  https://doi.org/10.1039/c3an36929c CrossRefGoogle Scholar
  52. Luo Z, Yuwen L, Han Y, Tian J, Zhu X, Weng L, Wang L (2012) Reduced graphene oxide/PAMAM–silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 36:179–185.  https://doi.org/10.1016/j.bios.2012.04.009 CrossRefGoogle Scholar
  53. Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide–multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315.  https://doi.org/10.1016/j.bios.2012.08.045 CrossRefGoogle Scholar
  54. Mani V, Devasenathipathy R, Chen S-M, Huang S-T, Vasantha VS (2014) Immobilization of glucose oxidase on graphene and cobalt phthalocyanine composite and its application for the determination of glucose. Enzym Microb Technol 66:60–66.  https://doi.org/10.1016/j.enzmictec.2014.08.009 CrossRefGoogle Scholar
  55. Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z, Ramanavicius A (2013) Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors Actuators B Chem 189:187–193.  https://doi.org/10.1016/j.snb.2013.03.140 CrossRefGoogle Scholar
  56. Mohamad Nor N, Abdul Razak K, Lockman Z (2017) Physical and electrochemical properties of iron oxide nanoparticles–modified electrode for amperometric glucose detection. Electrochim Acta 248:160–168.  https://doi.org/10.1016/j.electacta.2017.07.097 CrossRefGoogle Scholar
  57. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73.  https://doi.org/10.1038/ncomms1067
  58. Muguruma H, Hoshino T, Nowaki K (2015) Electronically type-sorted carbon nanotube–based electrochemical biosensors with glucose oxidase and dehydrogenase. ACS Appl Mater Interfaces 7:584–592.  https://doi.org/10.1021/am506758u CrossRefGoogle Scholar
  59. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720.  https://doi.org/10.1021/cr068077e CrossRefGoogle Scholar
  60. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  61. Ohara TJ, Rajagopalan R, Heller A (1994) “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451–2457CrossRefGoogle Scholar
  62. Oztekin Y, Ramanaviciene A, Yazicigil Z, Solak AO, Ramanavicius A (2011) Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode. Biosens Bioelectron 26:2541–2546.  https://doi.org/10.1016/j.bios.2010.11.001 CrossRefGoogle Scholar
  63. Pachauri V, Vlandas A, Kern K, Balasubramanian K (2010) Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications. Small 6:589–594.  https://doi.org/10.1002/smll.200900876 CrossRefGoogle Scholar
  64. Palanisamy S, Karuppiah C, Chen S-M (2014) Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids Surf B Biointerfaces 114:164–169.  https://doi.org/10.1016/j.colsurfb.2013.10.006 CrossRefGoogle Scholar
  65. Palanisamy S, Vilian ATE, Chen S-M (2012) Direct electrochemistry of glucose oxidase at reduced Graphene oxide/zinc oxide composite modified electrode for glucose sensor. Int J Electrochem Sci 7:2153–2163Google Scholar
  66. Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112:3427–3481.  https://doi.org/10.1021/cr200303p CrossRefGoogle Scholar
  67. Park S, Kim HC, Chung TD (2012) Electrochemical analysis based on nanoporous structures. Analyst 137:3891–3903.  https://doi.org/10.1039/c2an35294j CrossRefGoogle Scholar
  68. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239–6247.  https://doi.org/10.1016/j.electacta.2009.09.055 CrossRefGoogle Scholar
  69. Periasamy AP, Chang Y-J, Chen S-M (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114–120.  https://doi.org/10.1016/j.bioelechem.2010.06.009 CrossRefGoogle Scholar
  70. Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209.  https://doi.org/10.1016/j.bios.2011.07.018 CrossRefGoogle Scholar
  71. Pradhan D, Niroui F, Leung KT (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2:2409–2412.  https://doi.org/10.1021/am100413u CrossRefGoogle Scholar
  72. Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical sensors. Anal Chem 82:4723–4741.  https://doi.org/10.1021/ac101075n CrossRefGoogle Scholar
  73. Qiu C, Wang X, Liu X, Hou S, Ma H (2012) Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim Acta 67:140–146.  https://doi.org/10.1016/j.electacta.2012.02.011 CrossRefGoogle Scholar
  74. Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498–504.  https://doi.org/10.1016/j.bios.2012.09.009 CrossRefGoogle Scholar
  75. Ren J, Shi W, Li K, Ma Z (2012) Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and nafion film. Sensors Actuators B Chem 163:115–120.  https://doi.org/10.1016/j.snb.2012.01.017 CrossRefGoogle Scholar
  76. Rubianes MD, Rivas GA (2007) Dispersion of multi-wall carbon nanotubes in polyethylenimine: a new alternative for preparing electrochemical sensors. Electrochem Commun 9:480–484.  https://doi.org/10.1016/j.elecom.2006.08.057 CrossRefGoogle Scholar
  77. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779.  https://doi.org/10.1021/cr2001178 CrossRefGoogle Scholar
  78. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851.  https://doi.org/10.1021/la9019475 CrossRefGoogle Scholar
  79. Şenel M, Nergiz C (2012) Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite. Curr Appl Phys 12:1118–1124.  https://doi.org/10.1016/j.cap.2012.02.004 CrossRefGoogle Scholar
  80. Shamsipur M, Tabrizi MA (2014) Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing. Mater Sci Eng C Mater Biol Appl 45:103–108.  https://doi.org/10.1016/j.msec.2014.09.002 CrossRefGoogle Scholar
  81. Shan D, Zhu M, Xue H, Cosnier S (2007) Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles. Biosens Bioelectron 22:1612–1617.  https://doi.org/10.1016/j.bios.2006.07.019 CrossRefGoogle Scholar
  82. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074.  https://doi.org/10.1016/j.bios.2009.09.024 CrossRefGoogle Scholar
  83. Sharma S, Gupta N, Srivastava S (2012) Modulating electron transfer properties of gold nanoparticles for efficient biosensing. Biosens Bioelectron 37:30–37.  https://doi.org/10.1016/j.bios.2012.04.027 CrossRefGoogle Scholar
  84. Shervedani RK, Amini A, Sadeghi N (2016) Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: characterization and electrocatalytic applications. Biosens Bioelectron 77:478–485.  https://doi.org/10.1016/j.bios.2015.09.062 CrossRefGoogle Scholar
  85. Shi J, Zhang H, Snyder A, M-x W, Xie J, Marshall Porterfield D, Stanciu LA (2012) An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens Bioelectron 38:314–320.  https://doi.org/10.1016/j.bios.2012.06.007 CrossRefGoogle Scholar
  86. Si P, Kannan P, Guo L, Son H, Kim D-H (2011) Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosens Bioelectron 26:3845–3851.  https://doi.org/10.1016/j.bios.2011.02.044 CrossRefGoogle Scholar
  87. Sun C, Chen X, Han Q, Zhou M, Mao C, Zhu Q, Shen J (2013) Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique. Anal Chim Acta 776:17–23.  https://doi.org/10.1016/j.aca.2013.03.032 CrossRefGoogle Scholar
  88. Sung Y-M, Noh K, Kwak W-C, Kim TG (2012) Enhanced glucose detection using enzyme-immobilized ZnO/ZnS core/sheath nanowires. Sensors Actuators B Chem 161:453–459.  https://doi.org/10.1016/j.snb.2011.10.061 CrossRefGoogle Scholar
  89. Tan Y, Deng W, Chen C, Xie Q, Lei L, Li Y, Fang Z, Ma M, Chen J, Yao S (2010) Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosens Bioelectron 25:2644–2650.  https://doi.org/10.1016/j.bios.2010.04.040 CrossRefGoogle Scholar
  90. Tasviri M, Rafiee-Pour H-A, Ghourchian H, Gholami MR (2011) Amine functionalized TiO2–carbon nanotube composite: synthesis, characterization and application to glucose biosensing. Appl Nanosci 1:189–195.  https://doi.org/10.1007/s13204-011-0025-0 CrossRefGoogle Scholar
  91. Teo WZ, Ambrosi A, Pumera M (2013) Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun 28:51–53.  https://doi.org/10.1016/j.elecom.2012.12.006 CrossRefGoogle Scholar
  92. Terse-Thakoor T, Komori K, Ramnani P, Lee I, Mulchandani A (2015) Electrochemically functionalized seamless three-dimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis. Langmuir 31:13054–13061.  https://doi.org/10.1021/acs.langmuir.5b03273 CrossRefGoogle Scholar
  93. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301Google Scholar
  94. Turkmen E, Bas SZ, Gulce H, Yildiz S (2014) Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles–polyvinylferrocenium modified electrode. Electrochim Acta 123:93–102.  https://doi.org/10.1016/j.electacta.2013.12.189 CrossRefGoogle Scholar
  95. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196.  https://doi.org/10.1039/c3cs35528d CrossRefGoogle Scholar
  96. Unnikrishnan B, Palanisamy S, Chen S-M (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron 39:70–75.  https://doi.org/10.1016/j.bios.2012.06.045 CrossRefGoogle Scholar
  97. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988CrossRefGoogle Scholar
  98. Uzun SD, Kayaci F, Uyar T, Timur S, Toppare L (2014) Bioactive surface design based on functional composite electrospun nanofibers for biomolecule immobilization and biosensor applications. ACS Appl Mater Interfaces 6:5235–5243.  https://doi.org/10.1021/am5005927 CrossRefGoogle Scholar
  99. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13(12):983–988CrossRefGoogle Scholar
  100. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825.  https://doi.org/10.1021/cr068123a CrossRefGoogle Scholar
  101. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798.  https://doi.org/10.1021/nn100315s CrossRefGoogle Scholar
  102. Wang K, Liu Q, Guan Q-M, Wu J, Li H-N, Yan J-J (2011a) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257.  https://doi.org/10.1016/j.bios.2010.09.043 CrossRefGoogle Scholar
  103. Wang L, Bai J, Bo X, Zhang X, Guo L (2011b) A novel glucose sensor based on ordered mesoporous carbon–Au nanoparticles nanocomposites. Talanta 83:1386–1139CrossRefGoogle Scholar
  104. Wang C, Chen S, Xiang Y, Li W, Zhong X, Che X, Li J (2011c) Glucose biosensor based on the highly efficient immobilization of glucose oxidase on Prussian blue–gold nanocomposite films. J Mol Catal B Enzym 69:1–7.  https://doi.org/10.1016/j.molcatb.2010.12.002 CrossRefGoogle Scholar
  105. Wang W, Xie Y, Wang Y, Du H, Xia C, Tian F (2014) Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays. Microchim Acta 181:381–387.  https://doi.org/10.1007/s00604-013-1121-5 CrossRefGoogle Scholar
  106. Wang L, Li J, Pan Y, Min L, Zhang Y, Hu X, Yang Z (2017) Platinum nanoparticle–assembled nanoflake-like tin disulfide for enzyme-based amperometric sensing of glucose. Microchim Acta 184:2357–2363.  https://doi.org/10.1007/s00604-017-2209-0 CrossRefGoogle Scholar
  107. Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J Am Chem Soc 118:10321–10322CrossRefGoogle Scholar
  108. Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86:752–757.  https://doi.org/10.1021/ac403250w CrossRefGoogle Scholar
  109. Wu P, Shao Q, Hu Y, Jin J, Yin Y, Zhang H, Cai C (2010) Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim Acta 55:8606–8614.  https://doi.org/10.1016/j.electacta.2010.07.079 CrossRefGoogle Scholar
  110. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1899.  https://doi.org/10.1126/science.1080664 CrossRefGoogle Scholar
  111. Xiao X, Ulstrup J, Li H, Wang M’e, Zhang J, Si P (2014) Tabri gold assembly of glucose oxidase for electrochemical biosensing. Electrochim Acta 130:559–567.  https://doi.org/10.1016/j.electacta.2014.02.146 CrossRefGoogle Scholar
  112. Xu Y, Liu X, Ding Y, Luo L, Wang Y, Zhang Y, Xu Y (2011) Preparation and electrochemical investigation of a nano-structured material Ni2+/MgFe layered double hydroxide as a glucose biosensor. Appl Clay Sci 52:322–327.  https://doi.org/10.1016/j.clay.2011.03.011 CrossRefGoogle Scholar
  113. Xu Q, Gu S-X, Jin L, Y-e Z, Yang Z, Wang W, Hu X (2014) Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sensors Actuators B Chem 190:562–569.  https://doi.org/10.1016/j.snb.2013.09.049 CrossRefGoogle Scholar
  114. Yamanaka K, Vestergaard M’dC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors (Basel) 16:1761.  https://doi.org/10.3390/s16101761 CrossRefGoogle Scholar
  115. Yang Z, Ye Z, Zhao B, Zong X, Wang P (2010) A rapid response time and highly sensitive amperometric glucose biosensor based on ZnO nanorod via citric acid–assisted annealing route. Physica E 42:1830–1833.  https://doi.org/10.1016/j.physe.2010.02.001 CrossRefGoogle Scholar
  116. Yang Z, Tang Y, Li J, Zhang Y, Hu X (2014) Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens Bioelectron 54:528–533.  https://doi.org/10.1016/j.bios.2013.11.043 CrossRefGoogle Scholar
  117. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152.  https://doi.org/10.1016/j.bios.2013.08.043 CrossRefGoogle Scholar
  118. Zeng Q, Cheng J-S, Liu X-F, Bai H-T, Jiang J-H (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26:3456–3463.  https://doi.org/10.1016/j.bios.2011.01.024 CrossRefGoogle Scholar
  119. Zhai Y, Zhai S, Chen G, Zhang K, Yue Q, Wang L, Liu J, Jia J (2011) Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J Electroanal Chem 656:198–205.  https://doi.org/10.1016/j.jelechem.2010.11.020 CrossRefGoogle Scholar
  120. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546.  https://doi.org/10.1021/nn400482d CrossRefGoogle Scholar
  121. Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X (2011a) A new preparation of Au nanoplates and their application for glucose sensing. Biosens Bioelectron 28:344–348.  https://doi.org/10.1016/j.bios.2011.07.041 CrossRefGoogle Scholar
  122. Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011b) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245CrossRefGoogle Scholar
  123. Zhang Y, Fan Y, Wang S, Tan Y, Shen X, Shi Z (2012) Facile fabrication of a graphene-based electrochemical biosensor for glucose detection. Chin J Chem 30:1163–1167.  https://doi.org/10.1002/cjoc.201100452 CrossRefGoogle Scholar
  124. Zhang L, Yuan S-m, Yang L-m, Fang Z, Zhao G-c (2013) An enzymatic glucose biosensor based on a glassy carbon electrode modified with manganese dioxide nanowires. Microchim Acta 180:627–633.  https://doi.org/10.1007/s00604-013-0968-9 CrossRefGoogle Scholar
  125. Zhang X, Liao Q, Chu M, Liu S, Zhang Y (2014) Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens Bioelectron 52:281–287.  https://doi.org/10.1016/j.bios.2013.07.022 CrossRefGoogle Scholar
  126. Zheng B, Xie S, Qian L, Yuan H, Xiao D, Choi MMF (2011) Gold nanoparticles–coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensors Actuators B Chem 152:49–55.  https://doi.org/10.1016/j.snb.2010.09.051 CrossRefGoogle Scholar
  127. Zhong H, Yuan R, Chai Y, Li W, Zhong X, Zhang Y (2011) In situ chemo-synthesized multi-wall carbon nanotube–conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85:104–111.  https://doi.org/10.1016/j.talanta.2011.03.040 CrossRefGoogle Scholar
  128. Zhu LY, Yu G, Wang XQ, Xu D (2009) Preparation and characterization of TiO2 fiber with a facile polyorganotitanium precursor method. J Colloid Interface Sci 336:438–442.  https://doi.org/10.1016/j.jcis.2009.03.077 CrossRefGoogle Scholar
  129. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249.  https://doi.org/10.1021/ac5039863 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Devaraj Manoj
    • 1
    • 2
  • J. Santhanalakshmi
    • 1
  1. 1.Department of Physical ChemistryUniversity of MadrasChennaiIndia
  2. 2.Present Address: Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations