Advertisement

Nanomaterials for Advanced Analytical Applications in Chemo- and Biosensors

  • Selvaraj Devi
  • Vairaperumal Tharmaraj
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 25)

Abstract

Nanomaterials with unique optical properties and biocompatibility have been widely employed for designing and fabricating highly selective and sensitive nanosensors for the detection of various chemical and biological species. The development of nanomaterial-based chemo- and biosensors is studied usually under direct spectroscopic and reagent-mediated sensor platforms using both unmodified and surface-functionalized nanomaterials. This chapter mainly focuses on selective sensing of chemical and biological molecules using various types of nanomaterials. The main readouts are absorption (colorimetric, UV-visible), fluorescence, Raman/SERS spectroscopic, and electrochemical sensing techniques. The detailed discussion on the design of nanomaterial-based sensing systems, sensing principle, sensing method, and their signaling mechanisms has been provided. The sensing systems can also be ideally utilized for real-time applications.

Keywords

Nanomaterials Chemosensors Biosensors Absorption Fluorescence SERS and electrochemical sensors 

References

  1. Anwar A, Minhaz A, Khan NA, Kalantari K, Afifi ABM, Shah MR (2018) Synthesis of gold nanoparticles stabilized by a pyrazinium thioacetate ligand: a new colorimetric nanosensor for detection of heavy metal Pd(II). Sensors Actuators B 257:875–881.  https://doi.org/10.1016/j.snb.2017.11.040 CrossRefGoogle Scholar
  2. Awual MR, Hasan MM, Naushad M et al (2015) Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sensors Actuators B Chem 209:790–797.  https://doi.org/10.1016/j.snb.2014.12.053 CrossRefGoogle Scholar
  3. Bhattacharjee Y, Chakraborty A (2014) Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for hg(ii) detection in water with subnanomolar exactitude. ACS Sustain Chem Eng 2:2149–2154.  https://doi.org/10.1021/sc500339n CrossRefGoogle Scholar
  4. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461.  https://doi.org/10.1021/cr068105t CrossRefGoogle Scholar
  5. Cao X, Shen F, Zhang M, Guo J, Luo Y, Xu J, Li Y, Sun C (2014) Highly sensitive detection of melamine based on fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes Pigments 111:9–107.  https://doi.org/10.1016/j.dyepig.2014.06.001 CrossRefGoogle Scholar
  6. Chen B, Heng S, Peng H, Hu B, Yu X, Zhang Z, Pang D, Yue X, Zhu Y (2010) Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg and Pb in cells. Anal At Spectrom 25:1931–1938.  https://doi.org/10.1039/C0JA00003E CrossRefGoogle Scholar
  7. Chen S, Gao H, Shen W, Lu C, Yuan Q (2014) Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sens Actuators B Chem 190:673–678.  https://doi.org/10.1016/j.snb.2013.09.036 CrossRefGoogle Scholar
  8. Cheng ML, Tsai BC, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708(1–2):89–96.  https://doi.org/10.1016/j.aca.2011.10.013 CrossRefGoogle Scholar
  9. Cho HS, Lee B, Liu GL, Agarwal A, Lee LP (2009) Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9:3360–3363.  https://doi.org/10.1039/B912076A CrossRefGoogle Scholar
  10. Dar RA, Khare NG, Cole DP, Karna SP, Srivastava AK (2014) Green synthesis of a silver nanoparticle–graphene oxide composite and its application for As(III) detection. RSC Adv 4:14432–14440.  https://doi.org/10.1039/C4RA00934G CrossRefGoogle Scholar
  11. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566.  https://doi.org/10.1021/cr960386p CrossRefGoogle Scholar
  12. De Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134(12):2385–2393.  https://doi.org/10.1039/b912527m CrossRefGoogle Scholar
  13. Descalzo AB, Rurack K, Weisshoff H, Martınez-Manez R, Marcos MD, Amoros P, Hoffmann K, Soto J (2005) Rational design of a chromo- and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates. J Am Chem Soc 127(1):184–200.  https://doi.org/10.1021/ja045683n CrossRefGoogle Scholar
  14. Devi S, Pandian K (2014) Synthesis of chitosan protected nickel hexacyanoferrate modified titanium oxide nanotube and study its application on simultaneous s electrochemical detection of paracetamol and caffeine. Adv Mater Res 938(2014):192–198.  https://doi.org/10.4028/www.scientific.net/AMR.938.192 CrossRefGoogle Scholar
  15. Devi S, Devasena T, Saratha S, Tharmaraj P, Pandian K (2014) Dithiocarbamate post functionalized polypyrrole modified carbon sphere for the selective and sensitive detection of mercury by voltammetry method. Int J Electrochem Sci 9:670–683Google Scholar
  16. Doleman L, Davies L, Rowe L, Moschou EA, Deo S, Daunert S (2007) Bioluminescence DNA hybridization assay for Plasmodium falciparum based on the photoprotein aequorin. Anal Chem 79(11):4149–4153.  https://doi.org/10.1021/ac0702847 CrossRefGoogle Scholar
  17. Dou Y, Yang X, Liu Z, Zhu S (2013) Homocysteine-functionalized silver nanoparticles for selective sensing of Cu2+ ions and lidocaine hydrochloride. Colloids Surf A Physicochem Eng Asp 423:20–26.  https://doi.org/10.1016/j.colsurfa.2013.01.027 CrossRefGoogle Scholar
  18. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202.  https://doi.org/10.1039/CS9952400197 CrossRefGoogle Scholar
  19. Farhadi K, Forougha M, Molaei R, Hajizadeha S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B Chem 161:880–885.  https://doi.org/10.1016/j.snb.2011.11.052 CrossRefGoogle Scholar
  20. Feng J, Jin W, Huang P, Wu F (2017) Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate. J Nanopart Res 19:306.  https://doi.org/10.1007/s11051-017-3998-0 CrossRefGoogle Scholar
  21. Fernandez-Lopez C, Mateo-Mateo C, Alvarez-Puebla RA, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM (2009) Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25(24):13894–13899.  https://doi.org/10.1021/la9016454 CrossRefGoogle Scholar
  22. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910.  https://doi.org/10.1021/cr040090g CrossRefGoogle Scholar
  23. Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 103:1–14.  https://doi.org/10.1016/j.microc.2012.02.001 CrossRefGoogle Scholar
  24. Gao YX, Xin JW, Shen ZY, Pan W, Li X, Wu AG (2013) A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles. Sensors Actuators B 181:288–293.  https://doi.org/10.1016/j.snb.2013.01.079 CrossRefGoogle Scholar
  25. Guo S, Dong S, Wang E (2009a) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem Eur J 15(10):2416–2424.  https://doi.org/10.1002/chem.200801942 CrossRefGoogle Scholar
  26. Guo SJ, Li J, Ren W, Wen D, Dong SJ, Wang EK (2009b) Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: facile preparation and use as enhanced materials for electrochemical devices and SERS. Chem Mater 21(11):2247–2257.  https://doi.org/10.1021/cm900300v CrossRefGoogle Scholar
  27. Han XX, Xie Y, Zhao B, Ozaki Y (2010) Highly sensitive protein concentration assay over a wide range via surface-enhanced Raman scattering of Coomassie brilliant blue. Anal Chem 82(11):4325–4328.  https://doi.org/10.1021/ac100596u CrossRefGoogle Scholar
  28. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427.  https://doi.org/10.1126/science.1069156 CrossRefGoogle Scholar
  29. Jia J, Wu A, Luan S (2014) Synthesis and investigation of the imprinting efficiency of ion imprinted nanoparticles for recognizing copper. Phys Chem Chem Phys 16:16158–16165.  https://doi.org/10.1039/C4CP01858C CrossRefGoogle Scholar
  30. Jongjinakool S, Palasak K, Bousod N, Teepoo S (2014) Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia 56:10–18.  https://doi.org/10.1016/j.egypro.2014.07.126 CrossRefGoogle Scholar
  31. Jung JH, Park M, Shinkai S (2010) Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chem Soc Rev 39:4286–4302.  https://doi.org/10.1039/C002959A CrossRefGoogle Scholar
  32. Kim HN, Guo Z, Zhu W, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79–93.  https://doi.org/10.1039/C0CS00058B CrossRefGoogle Scholar
  33. Kumar GVP, Shruthi S, Vibha B, Reddy BAA, Kundu TK, Narayana C (2007) Hot spots in Ag Core−Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111(11):4388–4392.  https://doi.org/10.1021/jp068253n CrossRefGoogle Scholar
  34. Kumar A, Guo C, Sharma G et al (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv 6:13251–13263.  https://doi.org/10.1039/C5RA23372K CrossRefGoogle Scholar
  35. Lian Y, Yuan M, Zhao H (2014) DNA wrapped metallic single-walled carbon nanotube sensor for Pb (II) detection. Fullerenes, Nanotubes, Carbon Nanostruct 22(5):510–518.  https://doi.org/10.1080/1536383X.2012.690462 CrossRefGoogle Scholar
  36. Liang CH, Wang CC, Lin YC, Chen CH, Wong CH, Wu CY (2009) Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate−protein interactions. Anal Chem 81(18):7750–7756.  https://doi.org/10.1021/ac9012286 CrossRefGoogle Scholar
  37. Liu J, Zuo W, Zhang W, Liu J, Wang Z, Yang Z, Wang B (2014) Europium(III) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(II) from aqueous solution. Nanoscale 6:11473–11478.  https://doi.org/10.1039/C4NR03454F CrossRefGoogle Scholar
  38. Liu X, Na W, Qua Z, Su X (2016) Turn-off–on fluorescence probe based on 3-mercaptopropionic acid-capped CdS quantum dots for selective and sensitive lysozyme detection. RSC Adv 6:85795–85801.  https://doi.org/10.1039/C6RA14420A CrossRefGoogle Scholar
  39. Lo SH, Wu MC, Wu SP (2015) A turn-on fluorescent sensor for cysteine based on BODIPY functionalized Au nanoparticles and its application in living cell imaging. Sensors Actuators B Chem 221:1366–1371.  https://doi.org/10.1016/j.snb.2015.08.015 CrossRefGoogle Scholar
  40. Mahshid S, Li C, Mahshid SS, Askari M, Dolati A, Yang L, Luo S, Cai Q (2011) Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. Analyst 136(11):2322–2329.  https://doi.org/10.1039/c1an15021a CrossRefGoogle Scholar
  41. Meenakshi S, Devi S, Pandian K, Devendiran R, Selvaraj M (2016) Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples. Mater Sci Eng C 69:85–94.  https://doi.org/10.1016/j.msec.2016.06.037 CrossRefGoogle Scholar
  42. Miao LJ, Xin JW, Shen ZY, Zhang YJ, Wang HY, Wu AG (2013) Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. Sensors Actuators B 176:906–912.  https://doi.org/10.1016/j.snb.2012.10.070 CrossRefGoogle Scholar
  43. Nguyen BT, Anslyn EV (2006) Indicator-displacement assays. Coord Chem Rev 250(23–24):3118–3127.  https://doi.org/10.1016/j.ccr.2006.04.009 CrossRefGoogle Scholar
  44. Ni P, Dai H, Li Z, Sun Y, Hu J, Jiang S, Wang Y, Li Z (2015) Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144:258–262.  https://doi.org/10.1016/j.talanta.2015.06.014 CrossRefGoogle Scholar
  45. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  46. Niu C, Liu Q, Shang Z, Zhaoa L, Ouyang J (2015) Dual-emission fluorescent sensor based on AIE organic nanoparticles and Au nanoclusters for the detection of mercury and melamine. Nanoscale 7:8457–8465.  https://doi.org/10.1039/C5NR00554J CrossRefGoogle Scholar
  47. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108(9):3443–3480.  https://doi.org/10.1021/cr068000q CrossRefGoogle Scholar
  48. Noroozifar M, Khorasani-Motlagh M, Taheri A (2011) Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube. J Hazard Mater 185(1):255–261.  https://doi.org/10.1016/j.jhazmat.2010.09.02 CrossRefGoogle Scholar
  49. Parnsubsakula A, Oaewb S, Surareungchai W (2018) Zwitterionic peptide-capped gold nanoparticles for colorimetric detection of Ni2+. Nanoscale 10:5466–5473.  https://doi.org/10.1039/C7NR07998B CrossRefGoogle Scholar
  50. Pei LZ, Pei YQ, Xie YK, Fan CG, Yu HY (2013) Synthesis and characterization of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of L-cysteine. Cryst Eng Comm 15:1729–1738.  https://doi.org/10.1039/C2CE26592C CrossRefGoogle Scholar
  51. Polavarapu L, Perez-Juste J, Xu QH, Liz-Marzan LM (2014) Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C 2:7460–7476.  https://doi.org/10.1039/C4TC01142B CrossRefGoogle Scholar
  52. Priyadarshini E, Pradhan N (2017) Metal-induced aggregation of valine capped gold nanoparticles: an efficient and rapid approach for colorimetric detection of Pb2+ ions. Sci Rep 7:9278.  https://doi.org/10.1038/s41598-017-08847-5 CrossRefGoogle Scholar
  53. Quang DT, Kim SJ (2010) Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110(10):6280–6301.  https://doi.org/10.1021/cr100154p CrossRefGoogle Scholar
  54. Rajapandiyan P, Tang WL, Yang J (2011) Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. Food Control 56:155–160.  https://doi.org/10.1016/j.foodcont.2015.03.028 CrossRefGoogle Scholar
  55. Rodriguez-Lorenzo L, Alvarez-Puebla RA, de Abajo FJG, Liz-Marzan LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340.  https://doi.org/10.1021/jp909253w CrossRefGoogle Scholar
  56. Sophia SJ, Devi S, Pandian K (2012) Electrocatalytic oxidation of hydrazine based on NiHCF@TiO2 core- shell nanoparticles modified GCE. Int J Electrochem Sci 7:6580–6598Google Scholar
  57. Sujith A, Itoh T, Abe H, Yoshida KI, Kiran MS, Biju V, Ishikawa M (2009) Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394(7):1803–1809.  https://doi.org/10.1007/s00216-009-2883-9 CrossRefGoogle Scholar
  58. Sung HK, Oh SY, Park C, Kim Y (2013) Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 29:8978–8982.  https://doi.org/10.1021/la401408f CrossRefGoogle Scholar
  59. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760CrossRefGoogle Scholar
  60. Tharmaraj V, Jyisy Y (2014) Sensitive and selective colorimetric detection of Cu2+ in aqueous medium via aggregation of thiomalic acid functionalized Ag nanoparticles. Analyst 139:6304–6309.  https://doi.org/10.1039/c4an01449a CrossRefGoogle Scholar
  61. Tharmaraj V, Pitchumani K (2011) Alginate stabilized silver nanocube–Rh6G composite as a highly selective mercury sensor in aqueous solution. Nanoscale 3:1166–1170.  https://doi.org/10.1039/C0NR00749H CrossRefGoogle Scholar
  62. Tharmaraj V, Pitchumani K (2013) A highly selective ratiometric fluorescent chemosensor for Cu(II) based on dansyl-functionalized thiol stabilized silver nanoparticles. J Mater Chem B 1:1962–1967.  https://doi.org/10.1039/C3TB00534H CrossRefGoogle Scholar
  63. Veiseh O, Gunn JW, Zhang MQ (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304.  https://doi.org/10.1016/j.addr.2009.11.002 CrossRefGoogle Scholar
  64. Vigano C, Ruysschaert JM, Goormaghtigh E (2005) Sensor applications of attenuated total reflection infrared spectroscopy. Talanta 65(5):1132–1142.  https://doi.org/10.1016/j.talanta.2004.07.052 CrossRefGoogle Scholar
  65. Wang F, Wang L, Chen X, Yoon J (2014) Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev 43:4312–4324.  https://doi.org/10.1039/C4CS00008K CrossRefGoogle Scholar
  66. Wang G, Lu Y, Yan C, Lu Y (2015) DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sensors Actuators B Chem 211:1–6.  https://doi.org/10.1016/j.snb.2015.01.051 CrossRefGoogle Scholar
  67. Wen G, Lin C, Tang M, Liu G, Liang A, Jiang Z (2013) A highly sensitive aptamer method for Ag+ sensing using resonance Rayleigh scattering as the detection technique and a modified nanogold probe. RSC Adv 3:1941–1946.  https://doi.org/10.1039/C2RA22542E CrossRefGoogle Scholar
  68. Wu X, Xu Y, Dong Y, Jiang X, Zhu N (2013) Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles. Anal Methods 5:560.  https://doi.org/10.1039/c2ay25989c CrossRefGoogle Scholar
  69. Yang LB, Jiang X, Ruan WD, Zhao B, Xu WQ, Lombardi JR (2009) Adsorption study of 4-MBA on TiO2 nanoparticles by surface-enhanced Raman spectroscopy. J Raman Spectrosc 40:2004–2008.  https://doi.org/10.1002/jrs.2358 CrossRefGoogle Scholar
  70. Yu Y, Hong Y, Wang Y, Sun X, Liu B (2017) Mercaptosuccinic acid modified gold nanoparticles as colorimetric sensor for fast detection and simultaneous identification of Cr3+. Sensors Actuators B 239:865–873.  https://doi.org/10.1016/j.snb.2016.08.043 CrossRefGoogle Scholar
  71. Yuan X, Wen S, Shena M, Shi X (2013) Dendrimer-stabilized silver nanoparticles enable efficient colorimetric sensing of mercury ions in aqueous solution. Anal Methods 5:5486.  https://doi.org/10.1039/c3ay41331d CrossRefGoogle Scholar
  72. Zhai D, Xu W, Zhang L, Chang YT (2014) The role of “disaggregation” in optical probe development. Chem Soc Rev 43:2402–2411.  https://doi.org/10.1039/C3CS60368G CrossRefGoogle Scholar
  73. Zhan W, Bard AJ (2007) Electrogenerated chemiluminescence. Immunoassay of human C-reactive protein by using Ru(bpy)3 2+-encapsulated liposomes as labels. Anal Chem 79(2):459–463.  https://doi.org/10.1021/ac061336f CrossRefGoogle Scholar
  74. Zhan S, Wu Y, He L, Wang F, Zhan X, Zhou P, Qiu S (2012) Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Anal Methods 4:3997–4002.  https://doi.org/10.1039/C8AY00237A CrossRefGoogle Scholar
  75. Zhang H, Jia Z (2017) Development of fluorescent FRET probes for “off-on” detection of L-cysteine based on gold nanoparticles and porous silicon nanoparticles in ethanol solution. Sensors 17(3):520.  https://doi.org/10.3390/s17030520 CrossRefGoogle Scholar
  76. Zhang WB, Su ZF, Chu XF, Yang XA (2010) Evaluation of a new electrolytic cold vapour generation system for mercury determination by AFS. Talanta 80(5):2106–2112.  https://doi.org/10.1016/j.talanta.2009.11.016 CrossRefGoogle Scholar
  77. Zheng Y, Huang Z, Zhao C, Weng S, Zheng W, Lin X (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180(7–8):537–544.  https://doi.org/10.1007/s00604-013-0964-0 CrossRefGoogle Scholar
  78. Zhou Y, Xu Z, Yoon J (2011) Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004–2010. Chem Soc Rev 40:2222–2235.  https://doi.org/10.1039/C0CS00169D CrossRefGoogle Scholar
  79. Zoski CG (2007) Handbook of electrochemistry. Elsevier, OxfordGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Selvaraj Devi
    • 1
  • Vairaperumal Tharmaraj
    • 2
  1. 1.Department of Inorganic ChemistryUniversity of Madras, GuindyChennaiIndia
  2. 2.Department of Analytical ChemistryNational Chung-Hsing UniversityTaichungTaiwan

Personalised recommendations