Advertisement

Carbon Nanomaterials in Renewable Energy Production and Storage Applications

  • Joyita Banerjee
  • Kingshuk DuttaEmail author
  • Dipak RanaEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 23)

Abstract

With the increase in worldwide consumption of nonrenewable energy resources (i.e., fossil fuels) and emission of toxic gases, it is our foremost concern to concentrate our research on sustainable and renewable energy. This motive paved the way to develop several renewable energy production and storage systems, like solar cells, supercapacitors, fuel cells, and lithium-ion batteries. These devices, with high specific power, long cycle life, portability, and ease of fabrication, have been able to secure worthy positions in the field of energy science and technology. Over the last decades, attempts have been taken to use nanostructured carbon-based materials, like graphene and carbon nanotubes (CNTs), with the aim of improving the efficiency of the abovementioned energy storage systems.

In this book chapter, focus has been directed toward the recent progress and advancement on the efficiency of the electrode materials of these renewable energy storage systems via application of CNTs, graphene, or nanohybrid fillers. The ability of these materials to exhibit superior capacity toward photon absorption, capability toward generation of photocarriers, photovoltaic properties, and separation of charge carriers to form heterojunctions makes them ideal applicants in solar cells. The capacitance of a supercapacitor varied with the specific surface area, synthetic approach, pore size, pore size distribution, and posttreatment of these materials. Moreover, high electron conductivity and high surface area of these nanomaterials led to improvements in (a) electrode reaction rates in fuel cells, lithium-ion batteries, and supercapacitors and (b) charge storage capability of supercapacitors and lithium-ion batteries.

Keywords

Carbon nanotubes Graphene Conducting polymers Nanohybrid composites Electrodes Supercapacitors Fuel cells Solar cells Lithium-ion batteries Renewable energy 

Notes

Acknowledgments

KD is thankful to the Science and Engineering Research Board (SERB) [Department of Science and Technology (DST), Govt. of India] and the Indo-US Science and Technology Forum (IUSSTF) for the Indo-US Postdoctoral Fellowship (Award No. 2017/8-Kingshuk Dutta).

References

  1. Abdullah H, Omar A, Razali MZ, Yarmo MA (2014) Photovoltaic properties of ZnO photoanode incorporating with CNTs for dye-sensitized solar cell application. Ionics 20:1023–1030.  https://doi.org/10.1007/s11581-013-1038-3 CrossRefGoogle Scholar
  2. Agresti A, Pescetelli S, Taheri B, Del Rio Castillo AE, Cinà L, Bonaccorso F, Di Carlo A (2016) Graphene-perovskite solar cells exceed 18% efficiency: a stability study. ChemSusChem 9:2609–2619.  https://doi.org/10.1002/cssc.201600942 CrossRefGoogle Scholar
  3. Akhtar MS, Park J-G, Lee H-C, Lee S-K, Yang O-B (2010) Carbon nanotubes-polyethylene oxide composite electrolyte for solid-state dye-sensitized solar cells. Electrochim Acta 55:2418–2423.  https://doi.org/10.1016/j.electacta.2009.11.062 CrossRefGoogle Scholar
  4. An KH, Kim WS, Park YS, Moon JM (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392.  https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G CrossRefGoogle Scholar
  5. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161.  https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5 CrossRefGoogle Scholar
  6. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377.  https://doi.org/10.1038/nmat1368 CrossRefGoogle Scholar
  7. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657.  https://doi.org/10.1038/451652a CrossRefGoogle Scholar
  8. Bae J, Cha S-H, Park J (2013) A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery. Macromol Res 21:826–831.  https://doi.org/10.1007/s13233-013-1089-3 CrossRefGoogle Scholar
  9. Bag S, Samanta A, Bhunia P, Raj CR (2016) Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int J Hydrog Energy 41:22134–22143.  https://doi.org/10.1016/j.ijhydene.2016.08.041 CrossRefGoogle Scholar
  10. Bai Y, Li J, Qiu X, Wu J, Wang J, Xi J, Zhu W, Chen L (2007) Mesocarbon microbeads supported PtSn catalysts for electrochemical oxidation of ethanol. J Mater Sci 42:4508–4512.  https://doi.org/10.1007/s10853-006-0559-9 CrossRefGoogle Scholar
  11. Bai H, Zan X, Zhang L, Sun DD (2015) Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep Purif Technol 156:922–930.  https://doi.org/10.1016/j.seppur.2015.10.016 CrossRefGoogle Scholar
  12. Bak S-M, Nam K-W, Lee C-W, Kim K-H, Jung H-C, Yang X-Q, Kim K-B (2011) Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J Mater Chem 21:17309–17315.  https://doi.org/10.1039/C1JM13741G CrossRefGoogle Scholar
  13. Banerjee J, Dutta K (2017) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State Mater Sci 42:218–238.  https://doi.org/10.1080/10408436.2016.1173011 CrossRefGoogle Scholar
  14. Banerjee J, Panwar AS, Mukhopadhyay K, Saxena AK, Bhattacharyya AR (2015) Deagglomeration of multi-walled carbon nanotubes via an organic modifier: structure and mechanism. Phys Chem Chem Phys 17:25365–25378.  https://doi.org/10.1039/C5CP03736K CrossRefGoogle Scholar
  15. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792.  https://doi.org/10.1126/science.1060928 CrossRefGoogle Scholar
  16. Behnam A, Johnson JL, Choi Y, Ertosun MG, Okyay AK, Kapur P, Saraswat KC, Ural A (2008) Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl Phys Lett 92:243116 (1–3).  https://doi.org/10.1063/1.2945644 CrossRefGoogle Scholar
  17. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220.  https://doi.org/10.1016/j.nanoen.2011.11.006 CrossRefGoogle Scholar
  18. Cao Z, Wei B (2013) V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries. Nano Energy 2:481–490.  https://doi.org/10.1016/j.nanoen.2012.11.013 CrossRefGoogle Scholar
  19. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152.  https://doi.org/10.1021/es901950j CrossRefGoogle Scholar
  20. Castellano R (2010) Solar panel processing. Old City Publishing, PhiladelphiaGoogle Scholar
  21. Chai GS, Yoon SB, Yu J-S, Choi J-H, Sung Y-E (2004) Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 108:7074–7079.  https://doi.org/10.1021/jp0370472 CrossRefGoogle Scholar
  22. Chan Y-F, Wang C-C, Chen B-H, Chen C-Y (2013) Dye-sensitized TiO2 solar cells based on nanocomposite photoanode containing plasma-modified multi-walled carbon nanotubes. Prog Photovolt Res Appl 21:47–57.  https://doi.org/10.1002/pip.2174 CrossRefGoogle Scholar
  23. Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17:3078–3088.  https://doi.org/10.1039/B700389G CrossRefGoogle Scholar
  24. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349.  https://doi.org/10.1038/30694 CrossRefGoogle Scholar
  25. Che G, Lakshmi BB, Martin CR, Fisher ER (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15:750–758.  https://doi.org/10.1021/la980663i CrossRefGoogle Scholar
  26. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280.  https://doi.org/10.1016/j.mattod.2013.07.002 CrossRefGoogle Scholar
  27. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 17:5254–5259.  https://doi.org/10.1088/0957-4484/17/20/035 CrossRefGoogle Scholar
  28. Chen J, Li C, Zhao DW, Lei W, Zhang Y, Cole MT, Chu DP, Wang BP, Cui YP, Sun XW, Milne WI (2010a) A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays. Electrochem Commun 12:1432–1435.  https://doi.org/10.1016/j.elecom.2010.08.001 CrossRefGoogle Scholar
  29. Chen S, Ye F, Lin W (2010b) Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst. Int J Hydrog Energy 35:8225–8233.  https://doi.org/10.1016/j.ijhydene.2009.12.085 CrossRefGoogle Scholar
  30. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012a) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102.  https://doi.org/10.1021/nn302147s CrossRefGoogle Scholar
  31. Chen S, Wang Y, Ahn H, Wang G (2012b) Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J Power Sources 216:22–27.  https://doi.org/10.1016/j.jpowsour.2012.05.051 CrossRefGoogle Scholar
  32. Chen B-H, Kuo C-H, Ku J-R, Yan P-S, Huang C-J, Jeng M-S, Tsau F-H (2013) Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs. J Alloys Compd 568:78–83.  https://doi.org/10.1016/j.jallcom.2013.02.062 CrossRefGoogle Scholar
  33. Chen L, Yang Y, Gao Y, Tronganh N, Chen F, Lu M, Jiang Y, Jiao Z, Zhao B (2016) Facile synthesis of ultrathin, undersized MoS2/graphene for lithium-ion battery anodes. RSC Adv 6:99833–99851.  https://doi.org/10.1039/C6RA19601B CrossRefGoogle Scholar
  34. Chen S, Huang Q, Yang W, Zou H, Mai H, Wang JH (2018) Pt-CoN supported on TiN-modified carbon nanotubes (Pt-CoN/TiN-CNT) as efficient oxygen reduction reaction catalysts in acidic medium. Int J Hydrog Energy 43:14337–14346.  https://doi.org/10.1016/j.ijhydene.2018.06.003 CrossRefGoogle Scholar
  35. Cheng Y, Shen PK, Jiang SP (2014) NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. Int J Hydrog Energy 39:20662–20670.  https://doi.org/10.1016/j.ijhydene.2014.06.156 CrossRefGoogle Scholar
  36. Ciszewski M, Szatkowska E, Koszorek A, Majka M (2016) Carbon aerogels modified with graphene oxide, graphene and CNT as symmetric supercapacitor electrodes. J Mater Sci Mater Electron 28:4897–4903.  https://doi.org/10.1007/s10854-016-6137-2 CrossRefGoogle Scholar
  37. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological application. Springer, New YorkCrossRefGoogle Scholar
  38. Dai L (2013) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42.  https://doi.org/10.1021/ar300122m CrossRefGoogle Scholar
  39. Dang X, Yi H, Ham M-H, Qi J, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol 6:377–384.  https://doi.org/10.1038/nnano.2011.50 CrossRefGoogle Scholar
  40. Das S, Dutta K, Shul YG, Kundu PP (2015a) Progress in developments of inorganic nanocatalysts for application in direct methanol fuel cells. Crit Rev Solid State Mater Sci 40:316–357.  https://doi.org/10.1080/10408436.2015.1030493 CrossRefGoogle Scholar
  41. Das S, Dutta K, Hazra S, Kundu PP (2015b) Partially sulfonated poly(vinylidene fluoride) induced enhancements of properties and DMFC performance of Nafion electrolyte membrane. Fuel Cells 15:505–515.  https://doi.org/10.1002/fuce.201500018 CrossRefGoogle Scholar
  42. Das S, Dutta K, Kundu PP (2015c) Nickel nanocatalysts supported on sulfonated polyaniline: potential toward methanol oxidation and as anode materials for DMFCs. J Mater Chem A 3:11349–11357.  https://doi.org/10.1039/C5TA01837D CrossRefGoogle Scholar
  43. Das S, Dutta K, Kundu PP (2016) Sulfonated polypyrrole matrix induced enhanced efficiency of Ni nanocatalyst for application as an anode material for DMFCs. Mater Chem Phys 176:143–151.  https://doi.org/10.1016/j.matchemphys.2016.03.046 CrossRefGoogle Scholar
  44. Das S, Dutta K, Rana D (2018a) Polymer electrolyte membranes for microbial fuel cells: a review. Polym Rev.  https://doi.org/10.1080/15583724.2017.1418377
  45. Das S, Dutta K, Kundu PP, Bhattacharya SK (2018b) Nanostructured polyaniline: an efficient support matrix for platinum-ruthenium anode catalyst in direct methanol fuel cell. Fuel Cells 18:369–378.  https://doi.org/10.1002/fuce.201700201 CrossRefGoogle Scholar
  46. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51.  https://doi.org/10.1038/nature11115 CrossRefGoogle Scholar
  47. Dembele KT, Selopal GS, Soldano C, Nechache R, Rimada JC, Concina I, Sberveglieri G, Rosei F, Vomiero A (2013) Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J Phys Chem C 117:14510–14517.  https://doi.org/10.1021/jp403553t CrossRefGoogle Scholar
  48. Dhindsa KS, Mandal BP, Bazzi K, Lin MW, Nazri M, Nazri GA, Naik VM, Garg VK, Oliveira AC, Vaishnava P, Naik R, Zhou ZX (2013) Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries. Solid State Ionics 253:94–100.  https://doi.org/10.1016/j.ssi.2013.08.030 CrossRefGoogle Scholar
  49. Dmitrijev S (2006) Principles of semiconductor devices. Oxford University Press, OxfordGoogle Scholar
  50. Dong B, He B-L, Xu C-L, Li H-L (2007) Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B 143:7–13.  https://doi.org/10.1016/j.mseb.2007.06.017 CrossRefGoogle Scholar
  51. Du H-Y, Wang C-H, Hsu H-C, Chang S-T, Huang H-C, Chen L-C, Chen K-H (2012) Graphene nanosheet-CNT hybrid nanostructure electrode for a proton exchange membrane fuel cell. Int J Hydrog Energy 37:18989–18995.  https://doi.org/10.1016/j.ijhydene.2012.09.130 CrossRefGoogle Scholar
  52. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935.  https://doi.org/10.1126/science.1212741 CrossRefGoogle Scholar
  53. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54:401–435.  https://doi.org/10.1080/15583724.2014.881372 CrossRefGoogle Scholar
  54. Dutta K, Kundu PP (2018) Ch 1: Introduction to microbial fuel cells. In: Kundu PP, Dutta K (eds) Progress and recent trends in microbial fuel cells. Elsevier, Amsterdam, pp 1–6.  https://doi.org/10.1016/B978-0-444-64017-8.00001-4 CrossRefGoogle Scholar
  55. Dutta K, Kumar P, Das S, Kundu PP (2014a) Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells. Polym Rev 54:1–32.  https://doi.org/10.1080/15583724.2013.839566 CrossRefGoogle Scholar
  56. Dutta K, Kundu PP, Kundu A (2014b) Fuel cells – exploratory fuel cells | micro-fuel cells. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam.  https://doi.org/10.1016/B978-0-12-409547-2.10975-8 CrossRefGoogle Scholar
  57. Dutta K, Das S, Kundu PP (2014c) Low methanol permeable and highly selective membranes composed of pure and/or partially sulfonated PVdF-co-HFP and polyaniline. J Membr Sci 468:42–51.  https://doi.org/10.1016/j.memsci.2014.05.049 CrossRefGoogle Scholar
  58. Dutta K, Das S, Kumar P, Kundu PP (2014d) Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: a preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP. Appl Energy 118:183–191.  https://doi.org/10.1016/j.apenergy.2013.12.029 CrossRefGoogle Scholar
  59. Dutta K, Das S, Kundu PP (2015a) Synthesis, preparation, and performance of blends and composites of π-conjugated polymers and their copolymers in DMFCs. Polym Rev 55:630–677.  https://doi.org/10.1080/15583724.2015.1028631 CrossRefGoogle Scholar
  60. Dutta K, Das S, Rana D, Kundu PP (2015b) Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: a review. Polym Rev 55:1–56.  https://doi.org/10.1080/15583724.2014.958771 CrossRefGoogle Scholar
  61. Dutta K, Das S, Kundu PP (2015c) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101.  https://doi.org/10.1016/j.memsci.2014.09.010 CrossRefGoogle Scholar
  62. Dutta K, Das S, Kundu PP (2016a) Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane. Polym J 48:301–309.  https://doi.org/10.1038/pj.2015.106 CrossRefGoogle Scholar
  63. Dutta K, Das S, Kundu PP (2016b) Highly methanol resistant and selective ternary blend membrane composed of sulfonated PVdF-co-HFP, sulfonated polyaniline and nafion. J Appl Polym Sci 133:43294 (1–10).  https://doi.org/10.1002/app.43294 CrossRefGoogle Scholar
  64. Dutta K, Das S, Kundu PP (2016c) Polyaniline nanowhiskers induced low methanol permeability and high membrane selectivity in partially sulfonated PVdF-co-HFP membranes. RSC Adv 6:107960–107969.  https://doi.org/10.1039/c6ra24090a CrossRefGoogle Scholar
  65. Elsabawy KM, El-Hawary WF, Refat MS (2012) Advanced synthesis of titanium-doped-tellerium-cadmium mixtures for high performance solar cell applications as one of renewable source of energy. Int J Chem Sci 10:1869–1879 http://www.sadgurupublications.com/ContentPaper/2012/10_1689_10(4)2012.pdf Google Scholar
  66. Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Züttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124:321–329.  https://doi.org/10.1016/S0378-7753(03)00590-1 CrossRefGoogle Scholar
  67. EPRI-DOE Handbook of energy storage for transmission and distribution applications. (Report # 1001834, Electric Power Research Institute (EPRI), Palo Alto, CA, and the US Department of Energy, Washington, DC2003). http://www.sandia.gov/ess/publications/ESHB%201001834%20reduced%20size.pdf
  68. Etacheri VK, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262.  https://doi.org/10.1039/C1EE01598B CrossRefGoogle Scholar
  69. Fahrenbruch AL, Bube RH (1983) Fundamentals of solar cells. Academic, New YorkGoogle Scholar
  70. Fan B, Mei X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl Phys Lett 93:143103 (1–3).  https://doi.org/10.1063/1.2996270 CrossRefGoogle Scholar
  71. Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W, Xie S (2017) Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy 33:436–444.  https://doi.org/10.1016/j.nanoen.2017.02.003 CrossRefGoogle Scholar
  72. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356.  https://doi.org/10.1016/j.synthmet.2014.10.033 CrossRefGoogle Scholar
  73. Fisher AS, Khalid MB, Widstrom M, Kofinas P (2011) Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries. J Power Sources 196:9767–9773.  https://doi.org/10.1016/j.jpowsour.2011.07.081 CrossRefGoogle Scholar
  74. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950.  https://doi.org/10.1016/S0008-6223(00)00183-4 CrossRefGoogle Scholar
  75. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994.  https://doi.org/10.1038/nmat1782 CrossRefGoogle Scholar
  76. Gan Y, Zhu L, Qin H, Xia Y, Xiao H, Xu L, Ruan L, Liang C, Tao X, Huang H, Zhang W (2015) Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries. Solid State Ionics 269:44–50.  https://doi.org/10.1016/j.ssi.2014.11.017 CrossRefGoogle Scholar
  77. Gao G, Zhang Q, Cheng XB, Shapter JG, Yin T, Sun R, Cui D (2015) Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Sci Rep 5:17553 (1–13).  https://doi.org/10.1038/srep17553 CrossRefGoogle Scholar
  78. Gao S, Xu H, Fang Z, Ouadah A, Chen H, Chen X, Shi L, Ma B, Jing C, Zhu C (2018) Highly sulfonated poly(ether ether ketone) grafted on graphene oxide as nanohybrid proton exchange membrane applied in fuel cells. Electrochim Acta 283:428–437.  https://doi.org/10.1016/j.electacta.2018.06.180 CrossRefGoogle Scholar
  79. Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578.  https://doi.org/10.1016/j.nanoen.2014.11.023 CrossRefGoogle Scholar
  80. Gharibi H, Golmohammadi F, Kheirmand M (2013) Palladium/cobalt coated on multi-walled carbon nanotubes as an electro-catalyst for oxygen reduction reaction in passive direct methanol fuel cells. Fuel Cells 13:987–1004.  https://doi.org/10.1002/fuce.201200220 CrossRefGoogle Scholar
  81. Giuri A, Masi S, Colella S, Listorti A, Rizzo A, Gigli G, Liscio A, Treossi E, Palermo V, Rella S, Malitesta C, Corcione CE (2016) UV reduced graphene oxide PEDOT:PSS nanocomposite for perovskite solar cells. IEEE Trans Nanotechnol 15:725–730.  https://doi.org/10.1109/TNANO.2016.2524689 CrossRefGoogle Scholar
  82. Golobostanfard MR, Abdizadeh H (2015) Comparing incorporation of carbon nanotubes in hierarchical porous photoanodes of quantum dot and dye sensitized solar cells. Ceram Inter 41:497–504.  https://doi.org/10.1016/j.ceramint.2014.08.097 CrossRefGoogle Scholar
  83. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764.  https://doi.org/10.1126/science.1168049 CrossRefGoogle Scholar
  84. Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors. US Patent 4302518Google Scholar
  85. Goriparti S, Miele E, Angelis FD, Fabrizio E, Zaccaria RP, Capigli C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443.  https://doi.org/10.1016/j.jpowsour.2013.11.103 CrossRefGoogle Scholar
  86. Goswami DY, Kreith F (2007) Handbook of energy efficiency and renewable energy. CRC Press, Boca RatonGoogle Scholar
  87. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344.  https://doi.org/10.1038/35104607 CrossRefGoogle Scholar
  88. Groves M, Chan ASW, Malardier-Jugroot C, Jugroot M (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481:214–219.  https://doi.org/10.1016/j.cplett.2009.09.074 CrossRefGoogle Scholar
  89. Guo DJ, Li HL (2004) High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J Electroanal Chem 573:197–202.  https://doi.org/10.1016/j.jelechem.2004.07.006 CrossRefGoogle Scholar
  90. Hakimian A, Kamarthi S, Erbis S, Abraham KM, Cullinane TP, Isaacs JA (2015) Economic analysis of CNT lithium-ion battery manufacturing. Environ Sci Nano 2:463–476.  https://doi.org/10.1039/C5EN00078E CrossRefGoogle Scholar
  91. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840.  https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<834::AID-ADMA834>3.0.CO;2-R CrossRefGoogle Scholar
  92. Han X, Qing G, Sun J, Sun T (2012) How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed 51:5147–5151.  https://doi.org/10.1002/anie.201109187 CrossRefGoogle Scholar
  93. He Z, Chen J, Liu D, Tang H, Deng W, Kuang Y (2004a) Deposition and electrocatalytic properties of platinum nanoparticles on carbon nanotubes for methanol electrooxidation. Mater Chem Phys 85:396–401.  https://doi.org/10.1016/j.matchemphys.2004.01.030 CrossRefGoogle Scholar
  94. He Z, Chen J, Liu D, Zhou H, Kuang Y (2004b) Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diam Relat Mater 13:1764–1770.  https://doi.org/10.1016/j.diamond.2004.03.004 CrossRefGoogle Scholar
  95. He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27:5582–5588.  https://doi.org/10.1021/la2003589 CrossRefGoogle Scholar
  96. He X, Yang W, Mao X, Xu L, Zhou Y, Chen Y, Zhao Y, Yang Y, Xu J (2018) All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J Power Sources 376:138–146.  https://doi.org/10.1016/j.jpowsour.2017.09.084 CrossRefGoogle Scholar
  97. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558.  https://doi.org/10.1016/j.elecom.2008.08.007 CrossRefGoogle Scholar
  98. Hou X, Jiang H, Hu Y, Li Y, Huo J, Li C (2013) In situ deposition of hierarchical architecture assembly from Sn-filled CNTs for lithium-ion batteries. ACS Appl Mater Interfaces 5:6672–6677.  https://doi.org/10.1021/am401442v CrossRefGoogle Scholar
  99. Hu J, Ouyang M, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51.  https://doi.org/10.1038/19941 CrossRefGoogle Scholar
  100. Hu P, Xiao K, Liu Y, Yu G, Wang X, Fu L, Cui G, Zhu D (2004) Multiwall nanotubes with intramolecular junctions (CNx/C): preparation, rectification, logic gates, and application. Appl Phys Lett 84:4932–4934.  https://doi.org/10.1063/1.1760212 CrossRefGoogle Scholar
  101. Huang YF, Lin CW, Chang CS, Ho MJ (2011) Alternative platinum electrocatalyst supporter with micro/nanostructured polyaniline for direct methanol fuel cell applications. Electrochim Acta 56:5679–5685.  https://doi.org/10.1016/j.electacta.2011.04.026 CrossRefGoogle Scholar
  102. Huang Y, Cai J, Guo Y (2012) Roles of Pb and MnOx in PtPb/MnOx-CNTs catalyst for methanol electro-oxidation. Int J Hydrog Energy 37:1263–1271.  https://doi.org/10.1016/j.ijhydene.2011.10.002 CrossRefGoogle Scholar
  103. Iqbal N, Wang X, Babar AA, Yu J, Ding B (2016) Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J Colloid Interf Sci 476:87–93.  https://doi.org/10.1016/j.jcis.2016.05.010 CrossRefGoogle Scholar
  104. Ishikawa Y, Liao M-S, Cabrera CR (2000) Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn): a theoretical study. Surf Sci 463:66–80.  https://doi.org/10.1016/S0039-6028(00)00600-2 CrossRefGoogle Scholar
  105. Itkis ME, Borondics F, Yu A, Haddon RC (2006) Bolometric infrared photo-response of suspended single-walled carbon nanotube films. Science 312:413–416.  https://doi.org/10.1126/science.1125695 CrossRefGoogle Scholar
  106. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117.  https://doi.org/10.1039/C0JM00467G CrossRefGoogle Scholar
  107. Jayakumar P (2009) Solar energy resource assessment handbook. Renewable Energy Corporation Network for the Asia Pacific Centre for Transfer of Technology (APCTT) of the United Nations. doi: http://apctt.org/recap/sites/all/themes/recap/pdf/SOLAR.pdf
  108. Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, Jung S-M, Seo J-M, Kim M-J, Chang DW, Dai L, Baek J-B (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci U S A 09:5588–5593.  https://doi.org/10.1073/pnas.1116897109 CrossRefGoogle Scholar
  109. Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393.  https://doi.org/10.1021/ja3091643 CrossRefGoogle Scholar
  110. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gu X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20:4594–4598.  https://doi.org/10.1002/adma.200801810 CrossRefGoogle Scholar
  111. Jia L, Kou H, Jiang Y, Yu S, Li J, Wang C (2013) Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties. Electrochim Acta 107:71–77.  https://doi.org/10.1016/j.electacta.2013.06.004 CrossRefGoogle Scholar
  112. Jiang K-C, Xin S, Lee J-S, Kim J, Xiao X-L, Guo Y-G (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14:2934–2939.  https://doi.org/10.1039/C2CP23363K CrossRefGoogle Scholar
  113. Jiang S, Zhao B, Ran R, Cai R, Tadé MO (2014) A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Adv 4:9367–9371.  https://doi.org/10.1039/C3RA47840H CrossRefGoogle Scholar
  114. Jin H, Zhu L, Bing N, Wang L, Wang L (2014) No cytotoxic nitrogen-doped carbon nanotubes as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Solid State Sci 30:21–25.  https://doi.org/10.1016/j.solidstatesciences.2014.01.002 CrossRefGoogle Scholar
  115. Joo SH, Pak C, Kim EA, Lee YH, Chang H, Seung D, Choi YS, Park J-B, Kim TK (2008) Functionalized carbon nanotube-poly(arylenesulfone) composite membranes for direct methanol fuel cells with enhanced performance. J Power Sources 180:63–70.  https://doi.org/10.1016/j.jpowsour.2008.02.014 CrossRefGoogle Scholar
  116. Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, Qiao Q (2010) Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ Sci 3:1507–1510.  https://doi.org/10.1039/C0EE00068J CrossRefGoogle Scholar
  117. Ju MJ, Kim JC, Choi H-J, Choi IT, Kim SG, Lim K, Ko J, Lee J-J, Jeon I-Y, Baek J-B, Kim HK (2013) N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano 7:5243–5250.  https://doi.org/10.1021/nn4009774 CrossRefGoogle Scholar
  118. Kabbabi A, Gloaguen F, Andolfatto F, Durand R (1994) Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. J Electrochem Soc 373:251–254.  https://doi.org/10.1016/0022-0728(94)03503-2 CrossRefGoogle Scholar
  119. Kanai Y, Grossman JC (2008) Role of semiconducting and metallic tubes in P3HT/carbon-nanotube photovoltaic heterojunctions: density functional theory calculations. Nano Lett 8:908–912.  https://doi.org/10.1021/nl0732777 CrossRefGoogle Scholar
  120. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236.  https://doi.org/10.1038/nnano.2007.77 CrossRefGoogle Scholar
  121. Kang Z, Jiao K, Cheng J, Peng R, Jiao S, Hu Z (2018) A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell. Biosens Bioelectron 101:60–65.  https://doi.org/10.1016/j.bios.2017.10.008 CrossRefGoogle Scholar
  122. Kanninen P, Borghei M, Sorsa O, Pohjalainen E, Kauppinen EI, Ruiz V, Kallio T (2014) Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Appl Catal B 156–157:341–349.  https://doi.org/10.1016/j.apcatb.2014.03.041 CrossRefGoogle Scholar
  123. Kavan L, Liska P, Zakeeruddin SM, Grätzel M (2016) Low-temperature fabrication of highly-efficient, optically-transparent (FTO-free) graphene cathode for co-mediated dye-sensitized solar cells with acetonitrile-free electrolyte solution. Electrochim Acta 195:34–42.  https://doi.org/10.1016/j.electacta.2016.02.097 CrossRefGoogle Scholar
  124. Kawano T, Christensen D, Chen S, Cho CY, Lin L (2006) Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly. Appl Phys Lett 89:163510 (1–3).  https://doi.org/10.1063/1.2364151 CrossRefGoogle Scholar
  125. Khattak YH, Baig F, Soucase BM, Beg S, Gillani SR, Ahmed S (2018) Efficiency enhancement of novel CNTS/ZnS/Zn (O, S) thin film solar cell. Optik 171:453–462.  https://doi.org/10.1016/j.ijleo.2018.06.001 CrossRefGoogle Scholar
  126. Kim YJ, Kim JH, Kang M-S, Lee MJ, Won J, Lee JC, Kang YS (2004) Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells. Adv Mater 16:1753–1757.  https://doi.org/10.1002/adma.200306664 CrossRefGoogle Scholar
  127. Kim H-S, Kim S-I, Kim W-S (2006) A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery. Electrochim Acta 52:1457–1461.  https://doi.org/10.1016/j.electacta.2006.02.045 CrossRefGoogle Scholar
  128. Kim S-W, Seo D-H, Gwon H, Kim J, Kang K (2010) Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv Mater 22:5260–5264.  https://doi.org/10.1002/adma.201002879 CrossRefGoogle Scholar
  129. Kim B-S, Neo DCJ, Hou B, Park JB, Cho Y, Zhang N, Hong J, Pak S, Lee S, Sohn JI, Assender HE, Watt AAR, Cha SN, Kim JM (2016) High performance PbS quantum dot/graphene hybrid solar cell with efficient charge extraction. ACS Appl Mater Interfaces 8:13902–13908.  https://doi.org/10.1021/acsami.6b02544 CrossRefGoogle Scholar
  130. Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137:845–848.  https://doi.org/10.1149/1.2086566 CrossRefGoogle Scholar
  131. Koo Y, Shanov VN, Yarmolenko S, Schulz M, Sankar J, Yun Y (2015) Inverse-ordered fabrication of free-standing CNT sheets for supercapacitor. Langmuir 31:7616–7622.  https://doi.org/10.1021/acs.langmuir.5b00891 CrossRefGoogle Scholar
  132. Kristian N, Yu Y, Gunawan P, Xu R, Deng W, Liu X, Wang X (2009) Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim Acta 54:4916–4924.  https://doi.org/10.1016/j.electacta.2009.04.018 CrossRefGoogle Scholar
  133. Kumar P, Dutta K, Das S, Kundu PP (2014a) An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energy Res 38:1367–1390.  https://doi.org/10.1002/er.3163 CrossRefGoogle Scholar
  134. Kumar P, Dutta K, Das S, Kundu PP (2014b) Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: a preliminary evaluation for application in DMFC. Appl Energy 123:66–74.  https://doi.org/10.1016/j.apenergy.2014.02.060 CrossRefGoogle Scholar
  135. Kumar P, Dutta K, Kundu PP (2014c) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res 38:41–50.  https://doi.org/10.1002/er.3034 CrossRefGoogle Scholar
  136. Kumar U, Sikarwar S, Sonker RK, Yadav BC (2016) Carbon nanotube: synthesis and application in solar cells. J Inorg Organomet Polym Mater 26:1231–1242.  https://doi.org/10.1007/s10904-016-0401-z CrossRefGoogle Scholar
  137. Kumara GRA, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K (2002) Dye-sensitized solid-state solar cells: use of crystal growth inhibitors for deposition of the hole collector. Chem Mater 14:954–955.  https://doi.org/10.1021/cm011595f CrossRefGoogle Scholar
  138. Kundu PP, Dutta K (2016) Ch 6: Hydrogen fuel cells for portable applications. In: Ball M, Basile A, Veziroglu TN (eds) Compendium of hydrogen energy, vol 4. Hydrogen use, safety and the hydrogen economy, Woodhead Publishing Series in Energy # 86. Elsevier, Amsterdam, pp 111–131.  https://doi.org/10.1016/B978-1-78242-364-5.00006-3 CrossRefGoogle Scholar
  139. Kundu PP, Dutta K (2018) Progress and recent trends in microbial fuel cells, 1st edn. Elsevier, Amsterdam.  https://doi.org/10.1016/C2016-0-04695-8 CrossRefGoogle Scholar
  140. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654.  https://doi.org/10.1039/B904116H CrossRefGoogle Scholar
  141. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459.  https://doi.org/10.1038/nmat1387 CrossRefGoogle Scholar
  142. Lee K-M, Hu C-W, Chen H-W, Ho K-C (2008) Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Mater Solar Cells 92:1628–1633.  https://doi.org/10.1016/j.solmat.2008.07.012 CrossRefGoogle Scholar
  143. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011a) Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56:7460–7466.  https://doi.org/10.1016/j.electacta.2011.06.113 CrossRefGoogle Scholar
  144. Lee H-Y, Vogel W, Chu PP-J (2011b) Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes. Langmuir 27:14654–14661.  https://doi.org/10.1021/la202169j CrossRefGoogle Scholar
  145. Lee Y-B, Lee C-H, Kim K-M, Lim D-S (2011c) Preparation and properties on the graphite/polypropylene composite bipolar plates with a 304 stainless steel by compression molding for PEM fuel cell. Int J Hydrog Energy 36:7621–7627.  https://doi.org/10.1016/j.ijhydene.2011.03.108 CrossRefGoogle Scholar
  146. Li C, Mitra S (2007) Processing of fullerene-single wall carbon nanotube complex for bulk heterojunction photovoltaic cells. Appl Phys Lett 91:253112 (1–3).  https://doi.org/10.1063/1.2827189 CrossRefGoogle Scholar
  147. Li W, Yang YJ (2014) The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J Solid State Electrochem 18:1621–1626.  https://doi.org/10.1007/s10008-014-2391-5 CrossRefGoogle Scholar
  148. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299.  https://doi.org/10.1021/jp022505c CrossRefGoogle Scholar
  149. Li W, Wang X, Chen Z, Waje M, Yushan (2005) Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir 21:9386–9389.  https://doi.org/10.1021/la051124y CrossRefGoogle Scholar
  150. Li Y, Zang J, Yang B (2010) Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5:117–127.  https://doi.org/10.1016/j.nantod.2010.03.001 CrossRefGoogle Scholar
  151. Li B, Cao H, Shao J, Qu M (2011) Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem Commun 47:10374–10376.  https://doi.org/10.1039/C1CC13462K CrossRefGoogle Scholar
  152. Li C, Wu Y, Poplawsky J, Pennycook TJ, Paudel N, Yin W, Haigh SJ, Oxley MP, Lupini AR, Al-Jassim M, Pennycook SJ, Yan Y (2014a) Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys Rev Lett 112:156103 (1–5).  https://doi.org/10.1103/PhysRevLett.112.156103 CrossRefGoogle Scholar
  153. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014b) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118:22865–22872.  https://doi.org/10.1021/jp505744p CrossRefGoogle Scholar
  154. Li X, Zhang G, Zhang L, Zhong M, Yuan X (2015a) Silicon/graphite/carbon nanotubes composite as anode for lithium ion battery. Int J Electrochem Sci 10:2802–2811.  https://doi.org/10.1016/j.electacta.2006.01.043 CrossRefGoogle Scholar
  155. Li YY, Li CT, Yeh MH, Huang KC, Chen PW, Vittal R, Ho KC (2015b) Graphite with different structures as catalysts for counter electrodes in dye-sensitized solar cells. Electrochim Acta 179:211–219.  https://doi.org/10.1016/j.electacta.2015.06.007 CrossRefGoogle Scholar
  156. Li D, Gong Y, Pan C (2016a) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6:29788 (1–7).  https://doi.org/10.1038/srep29788 CrossRefGoogle Scholar
  157. Li Z, Boix PP, Xing G, Fu K, Kulkarni SA, Batabyal SK, Xu W, Cao A, Sum TC, Mathews N, Wong LH (2016b) Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale 8:6352–6360.  https://doi.org/10.1039/C5NR06177F CrossRefGoogle Scholar
  158. Li L, Jiang G, Ma J (2018) CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater Res Bull 104:53–59.  https://doi.org/10.1016/j.materresbull.2018.03.051 CrossRefGoogle Scholar
  159. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3912.  https://doi.org/10.1016/j.electacta.2010.02.025 CrossRefGoogle Scholar
  160. Liang C-W, Roth S (2008) Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett 8:1809–1812.  https://doi.org/10.1021/nl0802178 CrossRefGoogle Scholar
  161. Lien DH, Hsu WK, Zan HW, Tai NH, Tsai CH (2006) Photocurrent amplification at carbon nanotube-metal contacts. Adv Mater 18:98–103.  https://doi.org/10.1002/adma.200500912 CrossRefGoogle Scholar
  162. Lim D-H, Lee W-D, Lee H-I (2008) Highly dispersed and nano-sized Pt based electrocatalysts for low-temperature fuel cells. Catal Surv Jpn 12:310–325.  https://doi.org/10.1007/s10563-008-9059-z CrossRefGoogle Scholar
  163. Liu Z, Lin X, Lee JY, Zhang W, Han M, Gan LM (2002) Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18:4054–4060.  https://doi.org/10.1021/la0116903 CrossRefGoogle Scholar
  164. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285.  https://doi.org/10.1021/es034923g CrossRefGoogle Scholar
  165. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110.  https://doi.org/10.1016/j.jpowsour.2006.01.030 CrossRefGoogle Scholar
  166. Liu Y-H, Yi B, Shao Z-G, Wang L, Xing D, Zhang H (2007) Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications. J Power Sources 163:807–813.  https://doi.org/10.1016/j.jpowsour.2006.09.065 CrossRefGoogle Scholar
  167. Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y (2008a) Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett 92:223303 (1–3).  https://doi.org/10.1063/1.2938865 CrossRefGoogle Scholar
  168. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008b) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930.  https://doi.org/10.1002/adma.200800366 CrossRefGoogle Scholar
  169. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868.  https://doi.org/10.1021/nl102661q CrossRefGoogle Scholar
  170. Liu J, Xue Y, Zhang M, Dai L (2012a) Graphene-based materials for energy applications. MRS Bull 37:1265–1272.  https://doi.org/10.1557/mrs.2012.179 CrossRefGoogle Scholar
  171. Liu J, Zhang X, Pang H, Liu B, Zou Q, Chen J (2012b) High-performance bioanode based on the composite of CNTs-immobilized mediator and silk film-immobilized glucose oxidase for glucose/O2 biofuel cells. Biosens Bioelectron 31:170–175.  https://doi.org/10.1016/j.bios.2011.10.011 CrossRefGoogle Scholar
  172. Liu Z, Shi Q, Zhang R, Wang Q, Kang G, Peng F (2014) Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. J Power Sources 268:171–175.  https://doi.org/10.1016/j.jpowsour.2014.06.036 CrossRefGoogle Scholar
  173. Liu J, Mirri F, Notarianni M, Pasquali M, Motta N (2015a) High performance all-carbon thin film supercapacitors. J Power Sources 274:823–830.  https://doi.org/10.1016/j.jpowsour.2014.10.104 CrossRefGoogle Scholar
  174. Liu X, Zheng Y, Wang X (2015b) Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem Eur J 21:10408–10415.  https://doi.org/10.1002/chem.201501245 CrossRefGoogle Scholar
  175. Liu YF, Yuan GH, Jiang ZH, Yao ZP, Yue M (2015c) Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd 618:37–43.  https://doi.org/10.1016/j.jallcom.2014.08.167 CrossRefGoogle Scholar
  176. Liu X, Gao L, Yue G, Zheng H, Zhang W (2017) Efficient dye-sensitized solar cells incorporating hybrid counter electrode of CuMnSnS4 microsperes/carbon nanotubes. Sol Energy 158:952–959.  https://doi.org/10.1016/j.solener.2017.10.057 CrossRefGoogle Scholar
  177. Lo A-Y, Yu N, Huang S-J, Hung C-T, Liu S-H, Lei Z, Kuo C-T, Liu S-B (2011) Fabrication of CNTs with controlled diameters and their applications as electrocatalyst supports for DMFC. Diam Relat Mater 20:343–350.  https://doi.org/10.1016/j.diamond.2011.01.002 CrossRefGoogle Scholar
  178. Lo W-C, Su S-H, Chu H-J, He J-L (2018) TiO2-CNTs grown on titanium as an anode layer for lithium-ion batteries. Surf Coat Technol 337:544–551.  https://doi.org/10.1016/j.surfcoat.2018.01.029 CrossRefGoogle Scholar
  179. Longo C, Freitas J, De Paoli M-A (2003) Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. J Photochem Photobiol A 159:33–39.  https://doi.org/10.1016/S1010-6030(03)00106-0 CrossRefGoogle Scholar
  180. Lordi V, Yao N, Wei J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13:733–737.  https://doi.org/10.1021/cm000210a CrossRefGoogle Scholar
  181. Lu SX, Panchapakesan B (2006) Photoconductivity in single wall carbon nanotube sheets. Nanotechnology 17:1843–1850.  https://doi.org/10.1088/0957-4484/17/8/006 CrossRefGoogle Scholar
  182. Lu L, Li W, Zhou L, Zhang Y, Zhang Z, Chen Y, Liu J, Liu L, Chen W, Zhang Y (2016) Impact of size on energy storage performance of graphene based supercapacitor electrode. Electrochim Acta 219:463–469.  https://doi.org/10.1016/j.electacta.2016.10.020 CrossRefGoogle Scholar
  183. Luo Y, Kong D, Jia Y, Luo J, Lu Y, Zhang D, Qiu K, Li CM, Yu T (2013) Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv 3:5851–5859.  https://doi.org/10.1039/C3RA00151B CrossRefGoogle Scholar
  184. Luo Y, Zhang H, Guo D, Ma J, Li Q, Chen L, Wang T (2014) Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim Acta 132:332–337.  https://doi.org/10.1016/j.electacta.2014.03.179 CrossRefGoogle Scholar
  185. Luo Y, Yang T, Zhao Q, Zhang M (2017) CeO2/CNTs hybrid with high performance as electrode materials for supercapacitor. J Alloys Compd 729:64–70.  https://doi.org/10.1016/j.jallcom.2017.09.165 CrossRefGoogle Scholar
  186. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  187. Ma J, Li C, Yu F, Chen J (2015) “Brick-like” N-doped graphene/carbon nanotube structure forming three-dimensional films as high performance metal-free counter electrodes in dye-sensitized solar cells. J Power Sources 273:1048–1055.  https://doi.org/10.1016/j.jpowsour.2014.10.003 CrossRefGoogle Scholar
  188. Mao M, Hu J, Liu H (2015) Graphene-based materials for flexible electrochemical energy storage. Int J Energy Res 39:727–740.  https://doi.org/10.1002/er.3256 CrossRefGoogle Scholar
  189. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583.  https://doi.org/10.1002/adfm.200900166 CrossRefGoogle Scholar
  190. McEvoy AJ, Castañer L, Markvart T (2012) Solar cells: materials, manufacture and operation, 2nd edn. Elsevier, OxfordGoogle Scholar
  191. Mink JE, Hussain MM (2013) Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano 7:6921–6927.  https://doi.org/10.1021/nn402103q CrossRefGoogle Scholar
  192. Murai S, Mikoshiba S, Sumino H, Hayase S (2002) Quasi-solid dye-sensitized solar cells containing chemically cross-liked gel: how to make gels with a small amount of gelator. J Photochem Photobiol A 148:33–39.  https://doi.org/10.1039/B412462F CrossRefGoogle Scholar
  193. Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. In: Kozawa A (ed) Progress in batteries and solar cells, vol 9. JEC Press, Brunswick, pp 209–217 ISSN: 0198-7259Google Scholar
  194. Naghavi N, Spiering S, Powalla M, Cavana B, Lincot D (2003) High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Prog Photovolt Res Appl 11:437–443.  https://doi.org/10.1002/pip.508 CrossRefGoogle Scholar
  195. Nandy A, Kumar V, Mondal S, Dutta K, Salah M, Kundu PP (2015) Performance evaluation of microbial fuel cells: effect of varying electrode configuration and presence of a membrane electrode assembly. New Biotechnol 32:272–281.  https://doi.org/10.1016/j.nbt.2014.11.003 CrossRefGoogle Scholar
  196. Nath BC, Gogoi B, Boruah M, Sharma S, Khannam M, Ahmed GA, Dolui SK (2014) High performance polyvinyl alcohol/multi walled carbon nanotube/polyaniline hydrogel (PVA/MWCNT/PAni) based dye sensitized solar cells. Electrochim Acta 146:106–111.  https://doi.org/10.1016/j.electacta.2014.08.134 CrossRefGoogle Scholar
  197. Nazri G-A, Pistoia G (eds) (2003) Lithium batteries: science and technology. Springer, BostonGoogle Scholar
  198. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482.  https://doi.org/10.1063/1.118568 CrossRefGoogle Scholar
  199. Oraon R, De Adhikari A, Tiwari SK, Bhattacharyya S, Nayak GC (2016) Hierarchical self-assembled nanoclay derived mesoporous CNT/polyindole electrode for supercapacitors. RSC Adv 6:64271–64284.  https://doi.org/10.1039/C6RA12938B CrossRefGoogle Scholar
  200. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668.  https://doi.org/10.1007/s11671-009-9508-2 CrossRefGoogle Scholar
  201. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27.  https://doi.org/10.1016/j.jpowsour.2006.02.065 CrossRefGoogle Scholar
  202. Papageorgiou N, Athanassov Y, Armand M, Bonhôte P, Pettersson H, Azam A, Grätzel M (1996) The performance and stability of ambient temperature molten salts for solar cell applications. J Electrochem Soc 143:3099–3108.  https://doi.org/10.1149/1.1837171 CrossRefGoogle Scholar
  203. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224.  https://doi.org/10.1038/nnano.2009.58 CrossRefGoogle Scholar
  204. Park C-M, Yoon S, Lee S-I, Kim J-H, Jung J-H, Sohn H-J (2007) High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries. J Electrochem Soc 154:A917–A920.  https://doi.org/10.1149/1.2761829 CrossRefGoogle Scholar
  205. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654.  https://doi.org/10.1038/nnano.2010.162 CrossRefGoogle Scholar
  206. Peng Y-Y, Liu Y-M, Chang J-K, Wu C-H, Ger M-D, Pu N-W, Chang C-L (2015) A facile approach to produce holey graphene and its application in supercapacitors. Carbon 81:347–356.  https://doi.org/10.1016/j.carbon.2014.09.067 CrossRefGoogle Scholar
  207. Petnikota S, Marka SK, Banerjee A, Reddy MV, Srikanth VVSS, Chowdari BVR (2015) Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron (II) oxide’ composite for anode application in lithium ion batteries. J Power Sources 293:253–263.  https://doi.org/10.1016/j.jpowsour.2015.05.075 CrossRefGoogle Scholar
  208. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936.  https://doi.org/10.1021/ja00096a076 CrossRefGoogle Scholar
  209. Prasad AM, Santhosh C, Grace AN (2012) Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications. Appl Nanosci 2:457–466.  https://doi.org/10.1007/s13204-012-0061-4 CrossRefGoogle Scholar
  210. Prehn K, Warburg A, Schilling T, Bron M, Schulte K (2009) Towards nitrogen-containing CNTs for fuel cell electrodes. Compos Sci Technol 69:1570–1579.  https://doi.org/10.1016/j.compscitech.2008.09.006 CrossRefGoogle Scholar
  211. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577.  https://doi.org/10.1073/pnas.0706508104 CrossRefGoogle Scholar
  212. Qi W, Li X, Wu Y, Zeng H, Kuang C, Zhou S, Huang S, Yang Z (2017) Flexible electrodes of MnO2/CNTs composite for enhanced performance on supercapacitors. Surf Coat Technol 320:624–629.  https://doi.org/10.1016/j.surfcoat.2016.10.038 CrossRefGoogle Scholar
  213. Qiao Y, Li CM, Bao S-J, Bao Q-L (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84.  https://doi.org/10.1016/j.jpowsour.2007.03.048 CrossRefGoogle Scholar
  214. Qin L, Liang S, Pan A, Tan X (2016) Zn2SnO4/carbon nanotubes composite with enhanced electrochemical performance as anode materials for lithium-ion batteries. Mater Lett 164:44–47.  https://doi.org/10.1016/j.matlet.2015.10.125 CrossRefGoogle Scholar
  215. Qu B, Xu Y-T, Lin S-J, Zheng Y-F, Dai L-Z (2010) Fabrication of Pt nanoparticles decorated Ppy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synth Met 160:732–742.  https://doi.org/10.1016/j.synthmet.2010.01.012 CrossRefGoogle Scholar
  216. Qu W-L, Gu D-M, Wang Z-B, Zhang J-J (2014) High stability and high activity Pd/ITO-CNTs electrocatalyst for direct formic acid fuel cell. Electrochim Acta 137:676–684.  https://doi.org/10.1016/j.electacta.2014.06.064 CrossRefGoogle Scholar
  217. Ramadoss A, Yoon K-Y, Kwak M-J, Kim S-I, Ryu S-T, Jang J-H (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. J Power Sources 337:159–165.  https://doi.org/10.1016/j.jpowsour.2016.10.091 CrossRefGoogle Scholar
  218. Ramli NIT, Rashid SA, Mamat MS, Sulaiman Y, Krishnan S (2018) Incorporation of iron oxide into CNT/GNF as a high-performance supercapacitor electrode. Mater Chem Phys 212:318–324.  https://doi.org/10.1016/j.matchemphys.2018.03.044 CrossRefGoogle Scholar
  219. Rao CNR, Maitra U, Matte HSSR (2012) Synthesis, characterization, and selected properties of graphene. In: Rao CNR, Sood AK (eds) Graphene: synthesis, properties and phenomena. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–47.  https://doi.org/10.1002/9783527651122.ch1 CrossRefGoogle Scholar
  220. Ravi S, Gopi CVVM, Kim HJ (2016) Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors. Dalton Trans 45:12362–12371.  https://doi.org/10.1039/C6DT01664B CrossRefGoogle Scholar
  221. Razali MZ, Abdullah H, Asaahari I (2015) Morphological effect of CNT/TiO2 nanocomposite photoelectrodes dye-sensitized solar cell on photovoltaic performance with various annealing temperatures. Int J Photoenergy 2015:501978 (1–12).  https://doi.org/10.1155/2015/501978 CrossRefGoogle Scholar
  222. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM (2011) Solar photovoltaic electricity: current status and future prospects. Sol Energy 85:1580–1608.  https://doi.org/10.1016/j.solener.2010.12.002 CrossRefGoogle Scholar
  223. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 114:658–663.  https://doi.org/10.1021/jp908739q CrossRefGoogle Scholar
  224. Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4:6203–6211.  https://doi.org/10.1021/nn1016428 CrossRefGoogle Scholar
  225. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2:96–102.  https://doi.org/10.1038/asiamat.2010.82 CrossRefGoogle Scholar
  226. Sankar KV, Selvan RK (2015) The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J Power Sources 275:399–407.  https://doi.org/10.1016/j.jpowsour.2014.10.183 CrossRefGoogle Scholar
  227. Schopf D, Es-Souni M (2016) Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications. Appl Phys A 122:203 (1–7).  https://doi.org/10.1007/s00339-016-9730-6 CrossRefGoogle Scholar
  228. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430.  https://doi.org/10.1016/j.jpowsour.2009.11.048 CrossRefGoogle Scholar
  229. Selvaraj V, Alagar M (2007) Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun 9:1145–1153.  https://doi.org/10.1016/j.elecom.2007.01.011 CrossRefGoogle Scholar
  230. Sevilla M, Lota G, Fuertes AB (2007) Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. J Power Sources 171:546–551.  https://doi.org/10.1016/j.jpowsour.2007.05.096 CrossRefGoogle Scholar
  231. Shao Y, Yin G, Gao Y, Shi P (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097.  https://doi.org/10.1149/1.2191147 CrossRefGoogle Scholar
  232. Sharma T, Reddy ALM, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33:6749–6754.  https://doi.org/10.1016/j.ijhydene.2008.05.112 CrossRefGoogle Scholar
  233. Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884 (1–5).  https://doi.org/10.1038/srep00884 CrossRefGoogle Scholar
  234. Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223.  https://doi.org/10.1016/j.nanoen.2015.08.018 CrossRefGoogle Scholar
  235. Shim M, Javey A, Kam NWS, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123:11512–11513.  https://doi.org/10.1021/ja0169670 CrossRefGoogle Scholar
  236. Shin DH, Seo SW, Kim JM, Lee HS, Choi S-H (2018) Graphene transparent conductive electrodes doped with graphene quantum dots-mixed silver nanowires for highly-flexible organic solar cells. J Alloys Compd 744:1–6.  https://doi.org/10.1016/j.jallcom.2018.02.069 CrossRefGoogle Scholar
  237. Singh PK, Kim K-W, Rhee H-W (2009) Ionic liquid (1-methyl 3-propyl imidazolium iodide) with polymer electrolyte for DSSC application. Polym Eng Sci 49:862–865.  https://doi.org/10.1002/pen.21212 CrossRefGoogle Scholar
  238. Singh KJ, Singh TJ, Chettri D, Sarkar SK (2017) A thin layer of carbon nano tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs solar cell. Optik Int J Light Electron Opt 135:256–270.  https://doi.org/10.1016/j.ijleo.2017.01.090 CrossRefGoogle Scholar
  239. Sivakkumar SR, Kim D-W (2007) Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J Electrochem Soc 154:A134–A139.  https://doi.org/10.1149/1.2404901 CrossRefGoogle Scholar
  240. Somani SP, Somani PR, Umeno M (2008) Carbon nanotube incorporation: a new route to improve the performance of organic-inorganic heterojunction solar cells. Diam Relat Mater 17:585–588.  https://doi.org/10.1016/j.diamond.2008.01.084 CrossRefGoogle Scholar
  241. Srinivas B, Balaji S, Babu MN, Reddy YS (2015) Review on present and advance materials for solar cells. Int J Eng Res 3:178–182 http://www.ijoer.in/Special%20Issue-Vol.3.Issue.1.2015/178-182%20B.SRINIVAS.pdf Google Scholar
  242. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352.  https://doi.org/10.1038/35104620 CrossRefGoogle Scholar
  243. Stewart DA, Léonard F (2004) Photocurrents in nanotube junctions. Phys Rev Lett 93:107401 (1–4)CrossRefGoogle Scholar
  244. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652.  https://doi.org/10.1021/ar040224c CrossRefGoogle Scholar
  245. Sun S, Gao L, Liu Y (2011a) Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dye-sensitized solar cells. Thin Solid Films 519:2273–2279.  https://doi.org/10.1016/j.tsf.2010.11.008 CrossRefGoogle Scholar
  246. Sun Y, Wu Q, Shi G (2011b) Graphene based new energy materials. Energy Environ Sci 4:1113–1132.  https://doi.org/10.1039/C0EE00683A CrossRefGoogle Scholar
  247. Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506.  https://doi.org/10.1039/C2RA01367C CrossRefGoogle Scholar
  248. Tang D, Zhang W, Qiao Z-A, Liu Y, Wang D (2018) Polyanthraquinone/CNT nanocomposites as cathodes for rechargeable lithium ion batteries. Mater Lett 214:107–110.  https://doi.org/10.1016/j.matlet.2017.11.119 CrossRefGoogle Scholar
  249. Tao L, Zai J, Wang K, Zhang H, Xu M, Shen J, Su Y, Qian X (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235.  https://doi.org/10.1016/j.jpowsour.2011.10.131 CrossRefGoogle Scholar
  250. Timmons D, Harris JM, Roach B (2014) The economics of renewable energy. Global Development and Environment Institute, Tufts University, Medford http://www.ase.tufts.edu/gdae/education_materials/modules/RenewableEnergyEcon.pdf Google Scholar
  251. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29.  https://doi.org/10.1038/nnano.2008.329 CrossRefGoogle Scholar
  252. Tzolov M, Chang B, Yin A, Straus D, Xu JM, Brown G (2004a) Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array. Phys Rev Lett 92:075505 (1–4).  https://doi.org/10.1103/PhysRevLett.92.075505 CrossRefGoogle Scholar
  253. Tzolov MB, Chang B, Straus D, Yin A, Xu J (2004b) Carbon nanotube-silicon heterojunction diode array – integration on silicon and rectifying characteristics. Nontraditional Approaches to Patterning 141–143; Symposium on Nontraditional Approaches to Patterning held at the 2003 MRS Fall Meeting, Boston, MA, December 1–5, 2003Google Scholar
  254. Van Noorden R (2011) Chemistry: the trials of new carbon. Nature 469:14–16.  https://doi.org/10.1038/469014a CrossRefGoogle Scholar
  255. Vargas COA, Caballero Á, Morales J (2012) Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4:2083–2092.  https://doi.org/10.1039/C2NR11936F CrossRefGoogle Scholar
  256. Varzi A, Bresser D, von Zamory J, Müller F, Passerini S (2014) ZnFe2O4-C/LiFePO4-CNT: a novel high-power lithium-ion battery with excellent cycling performance. Adv Energy Mater 4:1400054 (1–9).  https://doi.org/10.1002/aenm.201400054 CrossRefGoogle Scholar
  257. Wang W, Kumta PN (2010) Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4:2233–2241.  https://doi.org/10.1021/nn901632g CrossRefGoogle Scholar
  258. Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M (2003) Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167.  https://doi.org/10.1021/ja029294+ CrossRefGoogle Scholar
  259. Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141.  https://doi.org/10.1016/j.progpolymsci.2004.08.001 CrossRefGoogle Scholar
  260. Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159.  https://doi.org/10.1016/j.jpowsour.2005.09.039 CrossRefGoogle Scholar
  261. Wang J, Xi J, Bai Y, Shen Y, Sun J, Chen L, Zhu W, Qiu X (2007) Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. J Power Sources 164:555–560.  https://doi.org/10.1016/j.jpowsour.2006.11.041 CrossRefGoogle Scholar
  262. Wang X, Zhi L, Müllen K (2008a) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327.  https://doi.org/10.1021/nl072838r CrossRefGoogle Scholar
  263. Wang X, Zhi L, Tsao N, Tomović Ž, Li J, Müllen K (2008b) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2990–2992.  https://doi.org/10.1002/anie.200704909 CrossRefGoogle Scholar
  264. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2:821–828.  https://doi.org/10.1021/am900815k CrossRefGoogle Scholar
  265. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828.  https://doi.org/10.1039/C1CS15060J CrossRefGoogle Scholar
  266. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013a) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568 (1–9).  https://doi.org/10.1038/srep03568 CrossRefGoogle Scholar
  267. Wang Y, Zhamu A, Jang BZ (2013b) Rechargable magnesium-ion cell having a high-capacity cathode. US Patent 2013/0302697Google Scholar
  268. Wang L, Zhang H, Deng Q, Huang Z, Zhou A, Li J (2014) Superior rate performance of Li4Ti5O12/TiO2/C/CNTs composites via microemulsion-assisted method as anodes for lithium ion battery. Electrochim Acta 142:202–207.  https://doi.org/10.1016/j.electacta.2014.07.072 CrossRefGoogle Scholar
  269. Wang B, Qiu J, Feng H, Sakai E (2015) Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors. Electrochim Acta 151:230–239.  https://doi.org/10.1016/j.electacta.2014.10.153 CrossRefGoogle Scholar
  270. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164.  https://doi.org/10.1007/s10800-011-0348-2 CrossRefGoogle Scholar
  271. Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126.  https://doi.org/10.1039/C3NR03312K CrossRefGoogle Scholar
  272. Wei JQ, Sun JL, Zhu JL, Wang KL, Wang ZC, Luo JB, Wu DH, Cao AY (2006) Carbon nanotube macrobundles for light sensing. Small 2:988–993.  https://doi.org/10.1002/smll.200600191 CrossRefGoogle Scholar
  273. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Double-walled carbon nanotube solar cells. Nano Lett 7:2317–2321.  https://doi.org/10.1021/nl070961c CrossRefGoogle Scholar
  274. Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616.  https://doi.org/10.1002/adma.201201920 CrossRefGoogle Scholar
  275. Wu M, Shaw LL (2005) A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates. Int J Hydrog Energy 30:373–380.  https://doi.org/10.1016/j.ijhydene.2004.08.005 CrossRefGoogle Scholar
  276. Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, He PM, Li WZ (1999) Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc 146:1696–1701.  https://doi.org/10.1149/1.1391828 CrossRefGoogle Scholar
  277. Wu G, Chen Y-S, Xu B-Q (2005) Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem Commun 7:1237–1243.  https://doi.org/10.1016/j.elecom.2005.07.015 CrossRefGoogle Scholar
  278. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302 (1–3).  https://doi.org/10.1063/1.2924771 CrossRefGoogle Scholar
  279. Wu X-L, Guo Y-G, Su J, Xiong J-W, Zhang Y-L, Wan L-J (2013) Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3:1155–1160.  https://doi.org/10.1002/aenm.201300159 CrossRefGoogle Scholar
  280. Würfel P, Würfel U (2009) Physics of solar cells: from basic principles to advanced concepts. Wiley, HobokenGoogle Scholar
  281. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509.  https://doi.org/10.1038/nnano.2009.177 CrossRefGoogle Scholar
  282. Xiao Y, Lin J-Y, Wu J, Tai S-Y, Yue G, Lin T-W (2013) Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J Power Sources 233:320–325.  https://doi.org/10.1016/j.jpowsour.2013.01.116 CrossRefGoogle Scholar
  283. Xiao X, Li T, Peng Z, Jin H, Zhong Q, Hu Q, Yao B, Luo Q, Zhang C, Gong L, Chen J, Gogotsi Y, Zhou J (2014) Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6:1–9.  https://doi.org/10.1016/j.nanoen.2014.02.014 CrossRefGoogle Scholar
  284. Xiao L, Sehlleier YH, Dobrowolny S, Mahlendorf F, Heinzel A, Schulz C, Wiggers H (2017) Novel Si-CNT/polyaniline nanocomposites as lithium-ion battery anodes for improved cycling performance. Mater Today: Proc 4:S263–S268.  https://doi.org/10.1016/j.matpr.2017.09.197 CrossRefGoogle Scholar
  285. Xie X, Ye M, Hu L, Liu N, McDonough JR, Chen W, Alshareef HN, Criddle CS, Cui Y (2012) Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ Sci 5:5265–5270.  https://doi.org/10.1039/C1EE02122B CrossRefGoogle Scholar
  286. Xu K, Li Y, Yang F, Yang W, Zhang L, Xu C, Kaneko T, Hatakeyama R (2014) Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon 68:511–519.  https://doi.org/10.1016/j.carbon.2013.11.028 CrossRefGoogle Scholar
  287. Xu D, Yu X, Gao D, Mu X, Zhong M, Yuan S, Xie J, Ye W, Huang J, Yang D (2016) Room-temperature processed, air-stable and highly efficient graphene/silicon solar cells with an organic interlayer. J Mater Chem A 4:11284–11291.  https://doi.org/10.1039/C6TA03759C CrossRefGoogle Scholar
  288. Xuan H, Xu Y, Zhang Y, Li H, Han P, Du Y (2018) One-step combustion synthesis of porous CNTs/C/NiMoO4 composites for high-performance asymmetric supercapacitors. J Alloys Compd 745:135–146.  https://doi.org/10.1016/j.jallcom.2018.02.172 CrossRefGoogle Scholar
  289. Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew Chem Int Ed 51:12124–12127.  https://doi.org/10.1002/anie.201207277 CrossRefGoogle Scholar
  290. Yadav A, Kumar P (2015) Enhancement in efficiency of PV cell through P&O algorithm. Int J Eng Res Technol 2:2642–2644Google Scholar
  291. Yahikozawa K, Fujii Y, Matsuda Y, Nishimura K, Takasu Y (1991) Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions. Electrochim Acta 36:973–978.  https://doi.org/10.1016/0013-4686(91)85302-N CrossRefGoogle Scholar
  292. Yan J, Uddin MJ, Dickens TJ, Okoli OI (2013) Carbon nanotubes (CNTs) enrich the solar cells. Sol Energy 96:239–252.  https://doi.org/10.1016/j.solener.2013.07.027 CrossRefGoogle Scholar
  293. Yang D, Bock C (2017) Laser reduced graphene for supercapacitor applications. J Power Sources 337:73–81.  https://doi.org/10.1016/j.jpowsour.2016.10.108 CrossRefGoogle Scholar
  294. Yang X, Guillorn MA, Austin D, Melechko AV, Cui H, Meyer HM III, Merkulov VI, Caughman JBO, Lowndes DH, Simpson ML (2003) Fabrication and characterization of carbon nanofiber-based vertically integrated Schottky barrier junction diodes. Nano Lett 3:1751–1755.  https://doi.org/10.1021/nl0346631 CrossRefGoogle Scholar
  295. Yang JE, Jang I, Kim M, Baeck SH, Hwang S, Shim SE (2013) Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor. Electrochim Acta 111:136–143.  https://doi.org/10.1016/j.electacta.2013.07.183 CrossRefGoogle Scholar
  296. Yang Z, Huang Y, Hu J, Xiong L, Luo H, Wan Y (2018) Nanocubic CoFe2O4/graphene composite for superior lithium-ion battery anodes. Synth Met 242:92–98.  https://doi.org/10.1016/j.synthmet.2018.05.010 CrossRefGoogle Scholar
  297. Yao P-C, Hang S-T (2014) Enhancing photovoltaic performances of dye-sensitized solar cells by multi-layered nanostructured titanium oxide photoelectrode. Sol Energy 108:322–330.  https://doi.org/10.1016/j.solener.2014.07.020 CrossRefGoogle Scholar
  298. Yazami R, Reynier YF (2002) Mechanism of self-discharge in graphite-lithium anode. Electrochim Acta 47:1217–1223.  https://doi.org/10.1016/S0013-4686(01)00827-1 CrossRefGoogle Scholar
  299. Yen M-Y, Teng C-C, Hsiao M-C, Liu P-I, Chuang W-P, Ma C-CM, Hsieh C-K, Tsai M-C, Tsai C-H (2011) Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. J Mater Chem 21:12880–12888.  https://doi.org/10.1039/C1JM11850A CrossRefGoogle Scholar
  300. Yen H-F, Horng Y-Y, Hu M-S, Yang W-H, Wen J-R, Ganguly A, Tai Y, Chen K-H, Chen L-C (2015) Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors. Carbon 82:124–134.  https://doi.org/10.1016/j.carbon.2014.10.042 CrossRefGoogle Scholar
  301. Yi B, Chen X, Guo K, Xu L, Chen C, Yan H, Chen J (2011) High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance. Mater Res Bull 46:2168–2172.  https://doi.org/10.1016/j.materresbull.2011.01.018 CrossRefGoogle Scholar
  302. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B 323:124–126.  https://doi.org/10.1016/S0921-4526(02)00871-2 CrossRefGoogle Scholar
  303. Yu L, Tune DD, Shearer CJ, Shapter JG (2015) Application of polymer interlayers in silicon-carbon nanotube heterojunction solar cells. ChemNanoMat 1:115–121.  https://doi.org/10.1002/cnma.201400005 CrossRefGoogle Scholar
  304. Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang XG (2011) Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3:529–545.  https://doi.org/10.1039/C0NR00423E CrossRefGoogle Scholar
  305. Yuan H, Jiao Q, Zhang S, Zhao Y, Wu Q, Li H (2016a) In situ chemical vapour deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells. J Power Sources 325:417–426.  https://doi.org/10.1016/j.jpowsour.2016.06.052 CrossRefGoogle Scholar
  306. Yuan W, Zhang Y, Cheng L, Wu H, Zheng L, Zhao D (2016b) The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J Mater Chem A 4:8932–8951.  https://doi.org/10.1039/C6TA01546H CrossRefGoogle Scholar
  307. Yue G, Zhang W, Wu J, Jiang Q (2013) Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells. Electrochim Acta 112:655–662.  https://doi.org/10.1016/j.electacta.2013.09.019 CrossRefGoogle Scholar
  308. Yue G, Liu X, Mao Y, Zheng H, Zhang W (2017) A promising hybrid counter electrode of vanadium sulfide decorated with carbon nanotubes for efficient dye-sensitized solar cells. Mater Today Energy 4:58–65.  https://doi.org/10.1016/j.mtener.2017.03.007 CrossRefGoogle Scholar
  309. Yun YS, Yoon G, Kang K, Jin H-J (2014) High-performance supercapacitors based on defect-engineered carbon nanotubes. Carbon 80:246–254.  https://doi.org/10.1016/j.carbon.2014.08.063 CrossRefGoogle Scholar
  310. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176.  https://doi.org/10.1021/jp201991j CrossRefGoogle Scholar
  311. Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285:1719–1722.  https://doi.org/10.1126/science.285.5434.1719 CrossRefGoogle Scholar
  312. Zhang X, Kumar PS, Aravindan V, Liu HH, Sundaramurthy J, Mhaisalkar SG, Duong HM, Ramakrishna S, Madhavi S (2012) Electrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J Phys Chem C 116:14780–14788.  https://doi.org/10.1021/jp302574g CrossRefGoogle Scholar
  313. Zhang M, Zhao N, Li W, He C, Li J, Shi C, Liu E (2013) A novel synthesis of CNTs/TiO2 nanocomposites with enhanced performance as photoanode of solar cell. Mater Lett 109:240–242.  https://doi.org/10.1016/j.matlet.2013.07.036 CrossRefGoogle Scholar
  314. Zhang BH, Yu F, Zhang L, Wang X, Wen Z, Wu YP, Holze R (2014a) Na0.35MnO2/CNT nanocomposite from a hydrothermal method as electrode material for aqueous supercapacitors. Z Anorg Allg Chem 640:2908–2913.  https://doi.org/10.1002/zaac.201400344 CrossRefGoogle Scholar
  315. Zhang M, Yan F, Tang X, Li Q, Wang T, Cao G (2014b) Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J Mater Chem A 2:5890–5897.  https://doi.org/10.1039/C4TA00311J CrossRefGoogle Scholar
  316. Zhang S, Zhu L, Song H, Chen X, Zhou J (2014c) Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy 10:172–180.  https://doi.org/10.1016/j.nanoen.2014.09.012 CrossRefGoogle Scholar
  317. Zhang K, Lee J-T, Li P, Kang B, Kim JH, Yi G-R, Park JH (2015) Conformal coating strategy comprising N-doped carbon and conventional graphene for achieving ultrahigh power and cyclability of LiFePO4. Nano Lett 15:6756–6763.  https://doi.org/10.1021/acs.nanolett.5b02604 CrossRefGoogle Scholar
  318. Zhang Y, Ju P, Zhao C, Qian X (2016) In-situ grown of MoS2/RGO/MoS2@Mo nanocomposite and its supercapacitor performance. Electrochim Acta 219:693–700.  https://doi.org/10.1016/j.electacta.2016.10.072 CrossRefGoogle Scholar
  319. Zhao H, Yang J, Li L, Li H, Wang J, Zhang Y (2009) Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrog Energy 34:3908–3914.  https://doi.org/10.1016/j.ijhydene.2009.02.079 CrossRefGoogle Scholar
  320. Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5:8739–8749.  https://doi.org/10.1021/nn202710s CrossRefGoogle Scholar
  321. Zhao H, Pan L, Jin J, Li L, Xu J (2012) PtCo/polypyrrole-multiwalled carbon nanotube complex cathode catalyst containing two types of oxygen reduction active sites used in direct methanol fuel cells. Fuel Cells 12:876–882.  https://doi.org/10.1002/fuce.201100194 CrossRefGoogle Scholar
  322. Zhao D, Zhao Y, Zhang X, Xu C, Peng Y, Li H, Yang Z (2013) Application of high-performance MnO2 nanocomposite electrodes in ionic liquid hybrid supercapacitors. Mater Lett 107:115–118.  https://doi.org/10.1016/j.matlet.2013.05.053 CrossRefGoogle Scholar
  323. Zhou X, Zou Y, Yang J (2014) Periodic structures of Sn self-inserted between graphene interlayers as anodes for Li-ion battery. J Power Sources 253:287–293.  https://doi.org/10.1016/j.jpowsour.2013.12.034 CrossRefGoogle Scholar
  324. Zhu J, Zhang G, Yu X, Li Q, Lu B, Xu Z (2014) Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nano Energy 3:80–87.  https://doi.org/10.1016/j.nanoen.2013.10.009 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  3. 3.Department of Chemical and Biological Engineering, Industrial Membrane Research InstituteUniversity of OttawaOttawaCanada

Personalised recommendations