Some New Applications of the Theory of Conjugate Differential Forms

  • Alberto Cialdea
Conference paper
Part of the Trends in Mathematics book series (TM)


In this survey we describe two applications of the concept of conjugate differential forms. Namely, after describing the concept of conjugate and self-conjugate differential forms, we consider an extension of the Brothers Riesz theorem to higher real dimension and Riesz-type inequalities for differential forms.


  1. 1.
    P. Caramuta, A. Cialdea, An application of the theory of self-conjugate differential forms to the Dirichlet problem for Cimmino system. Complex Var. Elliptic Equ. 62, 919–937 (2017). MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Caramuta, A. Cialdea, F. Silverio, The convergence in L p-norm of conjugate Laplace series. Int. J. Math. 27(6), 1650053 (16 pp.) (2016). MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Caramuta, A. Cialdea, F. Silverio, The Abel summability of conjugate Laplace series of measures. Mediterr. J. Math. 13, 3985–3999 (2016). MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Cialdea, Sul problema della derivata obliqua per le funzioni armoniche e questioni connesse. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 12, 181–200 (1988)MathSciNetGoogle Scholar
  5. 5.
    A. Cialdea, The Brothers Riesz theorem for conjugate differential forms. Appl. Anal. 65, 69–94 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Cialdea, The Brothers Riesz theorem in \(\mathbb {R}^n\) and Laplace series. Mem. Differ. Equ. Math. Phys. 12, 42–49 (1997)Google Scholar
  7. 7.
    A. Cialdea, On the theory of self-conjugate differential forms. Atti Sem. Mat. Fis. Univ. Modena XLVI, 595–620 (1998)Google Scholar
  8. 8.
    A. Cialdea, The Brothers Riesz Theorem: complex and real versions, in Generalized Analytic Functions, ed. by H. Florian et al. (Kluwer Academic Publishers, Dordrecht, 1998), pp. 139–149CrossRefGoogle Scholar
  9. 9.
    A. Cialdea, The summability of conjugate Laplace series on the sphere. Acta Sci. Math. (Szeged) 65, 93–119 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Cialdea, The simple layer potential approach to the Dirichlet problem: an extension to higher dimensions of Muskhelishvili method and applications, in Integral Methods in Science and Engineering, vol. 1, ed. by C. Constanda, M. Dalla Riva, D. Lamberti, P. Musolino (Birkhäuser, Boston, 2017), pp. 59–69CrossRefGoogle Scholar
  11. 11.
    A. Cialdea, G. Hsiao, Regularization for some boundary integral equations of the first kind in mechanics. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19, 25–42 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Cialdea, F. Silverio, Riesz-type inequalities for conjugate differential forms. J. Math. Anal. Appl. 448, 1513–1532 (2017). MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Cialdea, V. Leonessa, A. Malaspina, Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains. Bound. Value Probl. 2011(53), 1–25 (2011)zbMATHGoogle Scholar
  14. 14.
    A. Cialdea, V. Leonessa, A. Malaspina, On the Dirichlet and the Neumann problems for Laplace equation in multiply connected domains. Complex Var. Elliptic Equ. 57, 1035–1054 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Cialdea, E. Dolce, A. Malaspina, V. Nanni, On an integral equation of the first kind arising in the theory of Cosserat. Int. J. Math. 24, 1350037, 21 pp. (2013). MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Cialdea, V. Leonessa, A. Malaspina, On the Dirichlet problem for the Stokes system in multiply connected domains. Abstr. Appl. Anal. 2013, Article ID 765020, 12 pp. (2013). MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Cialdea, E. Dolce, V. Leonessa, A. Malaspina, On the potential theory in Cosserat elasticity. Bull. TICMI 18, 67–81 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    A. Cialdea, E. Dolce, V. Leonessa, A. Malaspina, New integral representations in the linear theory of viscoelastic materials with voids. Publ. Inst. Math. (Beograd) 96(110), 49–65 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Cialdea, V. Leonessa, A. Malaspina, A complement to potential theory in the Cosserat elasticity. Math. Methods Appl. Sci. 38, 537–547 (2015). MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Cialdea, V. Leonessa, A. Malaspina, The Dirichlet problem for second order divergence form elliptic operators with variable coefficients: the simple layer potential ansatz. Abstr. Appl. Anal. 2015, Article ID 276810, 11 pp. (2015). MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. De Vito, Sopra una congettura di Mikhlin relativa ad un’estensione della disuguaglianza di M. Riesz alle superficie. Rend. Matem. (5) 23, 273–297 (1964)Google Scholar
  22. 22.
    G. Fichera, k-misure su una varietà differenziabile. Rend. Sem. Mat. e Fis. Milano 30, 45–58 (1960)MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Fichera, Spazi lineari di k-misure e di forme differenziali, in Proceedings of the International Symposium on Linear Spaces. Jerusalem 1960, Israel Academy of Sciences and Humanities (Pergamon Press, Oxford, 1961), pp. 175–226Google Scholar
  24. 24.
    S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations (Pergamon Press, New York, 1965)zbMATHGoogle Scholar
  25. 25.
    C. Miranda, Sull’integrazione della forme differenziali esterne. Ricerche di Matematica 2, 151–182 (1953)MathSciNetzbMATHGoogle Scholar
  26. 26.
    F. Riesz, M. Riesz, Über Randwerte einer analytischen Funktion, Quatrième Congrès des mathématiciens scandinaves, Stockholm, 27–44 (1916)Google Scholar
  27. 27.
    R. Selvaggi, I. Sisto, A Dirichlet Problem for Harmonic Forms in C 1-Domains. Integr. Equ. Oper. Theory 28, 343–357 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    E.M. Stein, G. Weiss, On the theory of harmonic functions of several variables. Acta Math. 103, 25–62 (1960)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M.I. Vishik, On an inequality for the boundary values of harmonic functions in the ball. (Russian) Uspehi Math. Nauk 6 2(42), 165–166 (1951)Google Scholar
  31. 31.
    V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover Publications Inc., New York, 1930)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Cialdea
    • 1
  1. 1.Dipartimento di Matematica, Economia ed InformaticaUniversità della BasilicataPotenzaItaly

Personalised recommendations