Inelastic Maxwell Models for Dilute Granular Gases

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


Inelastic Maxwell models for dilute granular gases are introduced in this chapter. As with ordinary gases, in these models the collision rate of two colliding particles is independent of their relative velocity. This simplification allows us to exactly evaluate the moments of the Boltzmann collision operator. Consequently, in contrast to the previous chapters where the analytic results for hard spheres have been approximate, the use of Maxwell models opens up the possibility of obtaining the exact forms of the Navier–Stokes transport coefficients for mono- and multicomponent granular gases as well as the rheological properties in sheared granular systems. The purpose of this chapter then is to offer a brief survey on hydrodynamic properties derived in the context of inelastic Maxwell models for systems close to the homogeneous cooling state and for far from equilibrium situations. The results obtained for inelastic Maxwell models will be compared with the theoretical results derived for inelastic hard spheres using analytic approximate methods and the DSMC method. Finally, a surprising “nonequilibrium phase transition” for a sheared binary mixture in the tracer limit will be identified.


  1. 1.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988)CrossRefGoogle Scholar
  2. 2.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  3. 3.
    Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)Google Scholar
  4. 4.
    Ernst, M.H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Truesdell, C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)Google Scholar
  6. 6.
    Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  7. 7.
    Santos, A.: Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Cont. Mech. Therm. 21, 361–387 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ben-Naim, E., Krapivsky, P.L.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ernst, M.H., Brito, R.: High-energy tails for inelastic Maxwell models. Europhys. Lett. 58, 182–187 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Kohlstedt, K., Snezhko, A., Sapozhnikov, M.V., Aranson, I.S., Ben-Naim, E.: Velocity distributions of granular gases with drag and with long-range interactions. Phys. Rev. Lett. 95, 068001 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with overpopulated high energy tails. J. Stat. Phys. 109, 407–432 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Baldassarri, A., Marconi, U.M.B., Puglisi, A.: Influence of correlations of the velocity statistics of scalar granular gases. Europhys. Lett. 58, 14–20 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Krapivsky, P.L., Ben-Naim, E.: Nontrivial velocity distributions in inelastic gases. J. Phys. A 35, L147–L152 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Krapivsky, P.L., Ben-Naim, E.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011309 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Ernst, M.H., Brito, R.: Driven inelastic Maxwell models with high energy tails. Phys. Rev. E (R) 65, 040301 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–416 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ernst, M.H., Trizac, E., Barrat, A.: The rich behaviour of the Boltzmann equation for dissipative gases. Europhys. Lett. 76, 56–62 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Barrat, A., Trizac, E., Ernst, M.H.: Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases. J. Phys. A Math. Theor. 40, 4057–4076 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Carrillo, J.A., Cercignani, C., Gamba, I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E 62, 7700–7707 (2000)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Cercignani, C.: Shear flow of a granular material. J. Stat. Phys. 102, 1407–1415 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bobylev, A.V., Cercignani, C.: Moment equations for a granular material in a thermal bath. J. Stat. Phys. 106, 743–773 (2002)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Bolley, F., Carrillo, J.A.: Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys. 276, 287–314 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Santos, A.: Transport coefficients of \(d\)-dimensional inelastic Maxwell models. Physica A 321, 442–466 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Garzó, V., Santos, A.: Third and fourth degree collisional moments for inelastic Maxwell models. J. Phys. A Math. Theor. 40, 14927–14943 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Santos, A., Garzó, V.: Collisional rates for the inelastic Maxwell model: applications to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state. Granular Matter 14, 105–110 (2012)CrossRefGoogle Scholar
  28. 28.
    Santos, A., Ernst, M.H.: Exact steady-state solution of the Boltzmann equation: a driven one-dimensional inelastic maxwell gas. Phys. Rev. E 68, 011305 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Ben-Naim, E., Krapivsky, P.L.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011309 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Ben-Naim, E., Krapivsky, P.L.: The inelastic Maxwell model. In: Pöschel, T., Brilliantov, N.V. (eds.) Granular Gas Dynamics. Lectures Notes in Physics, vol. 624, pp. 65–94. Springer (2003)Google Scholar
  31. 31.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)zbMATHGoogle Scholar
  32. 32.
    Garzó, V., Santos, A.: Hydrodynamics of inelastic Maxwell models. Math. Model. Nat. Phenom. 6, 37–76 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Brey, J.J., García de Soria, M.I., Maynar, P.: Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E 82, 021303 (2010)Google Scholar
  34. 34.
    Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and heated case. Granular Matter 1, 57–64 (1998)CrossRefGoogle Scholar
  38. 38.
    Garzó, V.: Nonlinear transport in inelastic Maxwell mixtures under simple shear flow. J. Stat. Phys. 112, 657–683 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Garzó, V., Astillero, A.: Transport coefficients for inelastic Maxwell mixtures. J. Stat. Phys. 118, 935–971 (2005)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Garzó, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids. 14, 1476–1490 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Garzó, V., Dufty, J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706–5713 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Sela, N., Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J. Fluid Mech. 361, 41–74 (1998)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182, 130–136 (2008)CrossRefGoogle Scholar
  44. 44.
    Khalil, N., Garzó, V., Santos, A.: Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases. Phys. Rev. E 89, 052201 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)Google Scholar
  46. 46.
    Santos, A., Brey, J.J., Dufty, J.W.: Divergence of the Chapman-Enskog expansion. Phys. Rev. Lett. 56, 1571–1574 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    Santos, A.: Does the Chapman–Enskog expansion for sheared granular gases converge? Phys. Rev. Lett. 100, 078003 (2008)Google Scholar
  48. 48.
    Garzó, V., Trizac, E.: Rheological properties for inelastic Maxwell mixtures under shear flow. J. Non-Newtonian Fluid Mech. 165, 932–940 (2010)CrossRefGoogle Scholar
  49. 49.
    Montanero, J.M., Garzó, V.: Rheological properties in a low-density granular mixture. Phys. A 310, 17–38 (2002)CrossRefGoogle Scholar
  50. 50.
    Santos, A., Garzó, V.: Simple shear flow in inelastic Maxwell models. J. Stat. Mech. P08021 (2007)Google Scholar
  51. 51.
    Santos, A., Garzó, V., Vega Reyes, F.: An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J. Spec. Top. 179, 141–156 (2009)CrossRefGoogle Scholar
  52. 52.
    Garzó, V.: Shear-rate dependent transport coefficients for inelastic Maxwell models. J. Phys. A Math. Theor. 40, 10729–10757 (2007)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Garzó, V., Trizac, E.: Generalized transport coefficients for inelastic Maxwell mixtures under shear flow. Phys. Rev. E 92, 052202 (2015)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Marconi, U.M.B., Puglisi, A.: Mean-field model of free-cooling inelastic mixtures. Phys. Rev. E 65, 051305 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    Marconi, U.M.B., Puglisi, A.: Steady-state properties of a mean-field model of driven inelastic mixtures. Phys. Rev. E 66, 011301 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    Ben-Naim, E., Krapivsky, P.L.: Impurity in a Maxwellian unforced granular fluid. Eur. Phys. J. E 8, 507–515 (2002)CrossRefGoogle Scholar
  57. 57.
    Garzó, V., Trizac, E.: Non-equilibrium phase transition in a sheared granular mixture. Europhys. Lett. 94, 50009 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    Garzó, V., Trizac, E.: Impurity in a sheared inelastic Maxwell gas. Phys. Rev. E 85, 011302 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Garzó, V., Trizac, E.: Tracer diffusion coefficients in a sheared inelastic Maxwell gas. J. Stat. Mech. 073206 (2016)Google Scholar
  60. 60.
    Stanley, H.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)Google Scholar
  61. 61.
    Garzó, V., Trizac, E.: Dissipative homogeneous Maxwell mixtures: ordering transition in the tracer limit. Granular Matter 14, 99–104 (2012)CrossRefGoogle Scholar
  62. 62.
    Marín, C., Santos, A., Garzó, V.: Non-equilibrium phase transition in a binary mixture. Europhys. Lett. 33, 599–604 (1996)ADSCrossRefGoogle Scholar
  63. 63.
    Garzó, V., Khalil, N., Trizac, E.: Anomalous transport of impurities in inelastic Maxwell gases. Eur. Phys. J. E 38, 16 (2015)CrossRefGoogle Scholar
  64. 64.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  65. 65.
    Santos, A., Dufty, J.W.: Critical behavior of a heavy particle in a granular fluid. Phys. Rev. Lett. 86, 4823–4826 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations