Transport Around Steady Simple Shear Flow in Dilute Granular Gases

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


This chapter deals with the study of linear transport around the uniform or simple shear flow state. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first-order in the deviations of the hydrodynamic fields with respect to their values in the (unperturbed) non-Newtonian shear flow state. Given that the reference state (zeroth-order approximation in the Chapman–Enskog-like expansion) applies to arbitrary shear rates, the successive approximations in perturbation expansion retain all the hydrodynamic orders in the shear rate. As expected, due to the anisotropy in velocity space induced in the system by the shear flow, mass, momentum, and heat fluxes are given in terms of tensorial transport coefficients instead of the conventional scalar Navier–Stokes transport coefficients. The study is carried out for monocomponent granular gases and binary granular mixtures in the tracer limit.


  1. 1.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  2. 2.
    Lutsko, J.F.: Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluid. Phys. Rev. E 73, 021302 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Walton, O.R., Braun, R.L.: Viscosity and temperature calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    Campbell, C.S., Brennen, C.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Hopkins, M.H., Louge, M.Y.: Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47–56 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Goldhirsch, I., Tan, M.L.: The single-particle distribution function for rapid granular shear flows of smooth inelastic disks. Phys. Fluids 8, 1752–1763 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Alam, M., Luding, S.: Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69–103 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Savage, S.B.: Instability of unbounded uniform granular shear flow. J. Fluid Mech. 241, 109–123 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Babic, M.: On the stability of rapid granular flows. J. Fluid Mech. 254, 127–150 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Alam, M., Nott, P.R.: The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343, 267–301 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Alam, M., Nott, P.R.: Stability of plane Couette flow of a granular material. J. Fluid Mech. 377, 99–136 (1998)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kumaran, V.: Asymptotic solution of the Boltzmann equation for the shear flow of smooth inelastic disks. Physica A 275, 483–504 (2000)Google Scholar
  13. 13.
    Kumaran, V.: Anomalous behaviour of hydrodynamic modes in the two dimensional shear flow of a granular material. Physica A 284, 246–264 (2000)Google Scholar
  14. 14.
    Kumaran, V.: Hydrodynamic modes of a sheared granular flow from the Boltzmann and Navier-Stokes equations. Phys. Fluids 13, 2258–2268 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Garzó, V.: Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73, 021304 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, M., Dufty, J.W.: Transport far from equilibrium: uniform shear flow. Phys. Rev. E 56, 1733–1745 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  18. 18.
    Astillero, A., Santos, A.: Aging to non-Newtonian hydrodynamics in a granular gas. Europhys. Lett. 78, 24002 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Jenkins, J.T., Richman, M.W.: Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313–328 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Saha, S., Alam, M.: Non-Newtonian stress, collisional dissipation and heat flux in the shear flow of inelastic disks: a reduction via Grad’s moment method. J. Fluid Mech. 757, 251–296 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Garzó, V., Santos, A.: Hydrodynamics of inelastic Maxwell models. Math. Model. Nat. Phenom. 6, 37–76 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tij, M., Tahiri, E., Montanero, J.M., Garzó, V., Santos, A., Dufty, J.W.: Nonlinear Couette flow in a low density granular gas. J. Stat. Phys. 103, 1035–1068 (2001)CrossRefGoogle Scholar
  23. 23.
    Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921–1929 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)zbMATHGoogle Scholar
  25. 25.
    Natarajan, V.V.R., Hunt, M.L., Taylor, E.D.: Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1–25 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Menon, N., Durian, D.J.: Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow. Science 275, 1920–1922 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Zik, O., Stavans, J.: Self-diffusion in granular flows. Europhys. Lett. 16, 255–258 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Savage, S.B., Dai, R.: Studies of granular shear flows. Wall slip velocities, “layering” and self-diffusion. Mech. Mater. 16, 225–238 (1993)CrossRefGoogle Scholar
  29. 29.
    Zamankhan, P., Polashenski Jr., W., Tafreshi, H.V., Manesh, A.S., Sarkomaa, P.J.: Shear-induced particle diffusion in inelastic hard sphere fluids. Phys. Rev. E 58, R5237–R5240 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    Campbell, C.S.: Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85–101 (1997)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Garzó, V.: Tracer diffusion in granular shear flows. Phys. Rev. E 66, 021308 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Garzó, V.: Mass transport of an impurity in a strongly sheared granular gas. J. Stat. Mech. P02012 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations