Navier–Stokes Transport Coefficients for Multicomponent Granular Gases. I. Theoretical Results

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


The Chapman–Enskog method is applied to solve the set of Enskog kinetic equations of a multicomponent mixture of smooth inelastic hard spheres. As with monocomponent systems, an analysis is performed to first-order in spatial gradients. The Navier–Stokes transport coefficients and the first-order contribution to the cooling rate are obtained in terms of the solution to a set of coupled linear integral equations. These equations are approximately solved by considering the leading terms in a Sonine polynomial expansion. Explicit forms of the relevant transport coefficients of the mixture are obtained in terms of concentrations, masses and sizes of the constituents of the mixture, solid volume fraction, and coefficients of restitution. The dependence of these coefficients on the parameter space of the system is amply illustrated in the case of a binary mixture.


  1. 1.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular fluids. Ann. Rev. Fluid Mech. 32, 55–91 (2000)Google Scholar
  2. 2.
    Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Jenkins, J.T., Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050–2057 (1989)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Arnarson, B., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324–1328 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Willits, J.T., Arnarson, B.: Kinetic theory of a binary mixture of nearly elastic disks. Phys. Fluids 11, 3116–3122 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  8. 8.
    López de Haro, M., Cohen, E.G.D., Kincaid, J.: The Enskog theory for multicomponent mixtures. I. Linear transport theory. J. Chem. Phys. 78, 2746–2759 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    Zamankhan, Z.: Kinetic theory for multicomponent dense mixtures of slightly inelastic spherical particles. Phys. Rev. E 52, 4877–4891 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Jenkins, J.T., Mancini, F.: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J. Appl. Mech. 54, 27–34 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Huilin, L., Wenti, L., Rushan, B., Lidan, Y., Gidaspow, D.: Kinetic theory of fluidized binary granular mixtures with unequal granular temperature. Physica A 284, 265–276 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Huilin, L., Gidaspow, D., Manger, E.: Kinetic theory of fluidized binary granular mixtures. Phys. Rev. E 64, 061301 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Garzó, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids. 14, 1476–1490 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Garzó, V., Montanero, J.M., Dufty, J.W.: Mass and heat fluxes for a binary granular mixture at low density. Phys. Fluids 18, 083305 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Garzó, V., Dufty, J.W., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E 76, 031303 (2007)Google Scholar
  16. 16.
    Garzó, V., Hrenya, C.M., Dufty, J.W.: Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E 76, 031304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Montanero, J.M., Garzó, V.: Shear viscosity for a heated granular binary mixture at low density. Phys. Rev. E 67, 021308 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Garzó, V., Montanero, J.M.: Shear viscosity for a moderately dense granular binary mixture. Phys. Rev. E 68, 041302 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Garzó, V., Montanero, J.M.: Navier-Stokes transport coefficients of \(d\)-dimensional granular binary mixtures at low-density. J. Stat. Phys. 129, 27–58 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Garzó, V., Vega Reyes, F.: Mass transport of impurities in a moderately dense granular gas. Phys. Rev. E 79, 041303 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Noskowicz, S.H., Bar-Lev, O., Serero, D., Goldhirsch, I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Serero, D., Noskowicz, S.H., Tan, M.L., Goldhirsch, I.: Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. Spec. Top. 179, 221–247 (2009)CrossRefGoogle Scholar
  24. 24.
    Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Rahaman, M.F., Naser, J., Witt, P.J.: An unequal granular temperature kinetic theory: description of granular flow with multiple particle classes. Powder Technol. 138, 82–92 (2003)CrossRefGoogle Scholar
  26. 26.
    Iddir, H., Arastoopour, H.: Modeling of multitype particle flow using the kinetic theory approach. AIChE J. 51, 1620–1632 (2005)CrossRefGoogle Scholar
  27. 27.
    van Beijeren, H., Ernst, M.H.: The non-linear Enskog-Boltzmann equation. Phys. Lett. A 43, 367–368 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    van Beijeren, H., Ernst, M.H.: The modified Enskog equation for mixtures. Physica A 70, 225–242 (1973)Google Scholar
  29. 29.
    Barajas, L., Garcia-Colín, L.S., Piña, E.: On the Enskog-Thorne theory for a binary mixture of dissimilar rigid spheres. J. Stat. Phys. 7, 161–183 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)zbMATHGoogle Scholar
  31. 31.
    Garzó, V., Vega Reyes, F., Montanero, J.M.: Modified Sonine approximation for granular binary mixtures. J. Fluid Mech. 623, 387–411 (2009)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Murray, J.A., Garzó, V., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. III. Comparison of dense and dilute transport coefficients and equations of state for a binary mixture. Powder Technol. 220, 24–36 (2012)CrossRefGoogle Scholar
  33. 33.
    Garzó, V.: Thermal diffusion segregation in granular binary mixtures described by the Enskog equation. New J. Phys. 13, 055020 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Garzó, V., Murray, J.A., Vega Reyes, F.: Diffusion transport coefficients for granular binary mixtures at low density: thermal diffusion segregation. Phys. Fluids 25, 043302 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Brilliantov, N.V., Pöschel, T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424–430 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Serero, D., Noskowicz, S.H., Goldhirsch, I.: Exact results versus mean field solutions for binary granular gas mixtures. Granul. Matter 10, 37–46 (2007)CrossRefGoogle Scholar
  37. 37.
    Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)Google Scholar
  38. 38.
    Santos, A.: A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics. Lecture Notes in Physics, vol. 923. Springer, New York (2016)Google Scholar
  39. 39.
    Reed, T.M., Gubbins, K.E.: Applied Statistical Mechanics. MacGraw-Hill, New York (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations