Navier–Stokes Transport Coefficients for Monocomponent Granular Gases. I. Theoretical Results

  • Vicente GarzóEmail author
Part of the Soft and Biological Matter book series (SOBIMA)


A normal solution to the revised Enskog kinetic theory of smooth monocomponent granular gases is obtained via the Chapman–Enskog method for states close to the local homogeneous cooling state. The analysis is performed to first-order in spatial gradients, allowing the identification of Navier–Stokes transport coefficients associated with heat and momentum fluxes along with the first-order contribution to the cooling rate. The transport coefficients are determined from the solution to a set of coupled linear integral equations analogous to those for elastic collisions. These integral equations are solved by using different approximate methods that yield explicit expressions for the transport coefficients in terms of the coefficient of restitution and the solid volume fraction. Finally, the results obtained from the Chapman–Enskog method are compared against those derived from different approaches.


  1. 1.
    Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3493 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Jenkins, J.T., Richman, M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355–377 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435–444 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Goldhirsch, I.: Scales and kinetics of granular flows. Chaos 9, 659–671 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Goldhirsch, I., Tan, M.L., Zanetti, G.: A molecular dynamical study of granular fluids I: The unforced granular gas in two dimensions. J. Sci. Comput. 8, 1–40 (1993)CrossRefGoogle Scholar
  9. 9.
    Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Puglisi, A.: Transport and Fluctuations in Granular Fluids. From Boltzmann Equation to Hydrodynamics, Diffusion and Motor Effects. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  12. 12.
    Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)Google Scholar
  13. 13.
    Scharf, G.: Functional-analytic discussion of the linearized Boltzmann. Helv. Phys. Acta 40, 929–945 (1967)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Scharf, G.: Normal solutions of the linearized Boltzmann equation. Helv. Phys. Acta 42, 5–22 (1969)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Résibois, P., de Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)zbMATHGoogle Scholar
  16. 16.
    McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)Google Scholar
  17. 17.
    Dufty, J.W., Brey, J.J.: Hydrodynamic modes for granular gases. Phys. Rev. E 68, 030302(R) (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Brey, J.J., Dufty, J.W.: Hydrodynamic modes for a granular gas from kinetic theory. Phys. Rev. E 72, 011303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  20. 20.
    Tan, M.L., Goldhirsch, I.: Rapid granular flows as mesoscopic systems. Phys. Rev. Lett. 81, 3022–3025 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Dufty, J.W., Brey, J.J.: Comment on “Rapid granular flows as mesoscopic systems”. Phys. Rev. Lett. 82, 4566 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Garzó, V., Santos, A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  23. 23.
    Dorfman, J.R., van Beijeren, H.: The kinetic theory of gases. In: Berne, B.J. (ed.) Statistical Mechanics. Part B: Time-Dependent Processes, pp. 65–179. Plenum, New York (1977)Google Scholar
  24. 24.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)CrossRefGoogle Scholar
  25. 25.
    Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flows at low density. Phys. Rev. E 58, 4638–4653 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Goldhirsch, I., Sela, N.: Origin of normal stress differences in rapid granular flows. Phys. Rev. E 54, 4458–4461 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Sela, N., Goldhirsch, I., Noskowicz, S.H.: Kinetic theoretical study of a simply sheared two-dimensional granular gas to Burnett order. Phys. Fluids 8, 2337–2353 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Sela, N., Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J. Fluid Mech. 361, 41–74 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Theory of granular gases: some recent results and some open problems. J. Phys.: Condens. Matter 17, S2591–S2608 (2005)ADSGoogle Scholar
  30. 30.
    Garzó, V., Dufty, J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Lutsko, J.F.: Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Margeneau, H., Murphy, G.M.: The Mathematics of Physics and Chemistry. Krieger, Huntington, N.Y. (1956)Google Scholar
  33. 33.
    de Groot, S.R., van Leeuwen, W.A., van Weert, C.G.: Relativistic Kinetic Theory: Principles and Applications. North-Holland, Amsterdam (1980)Google Scholar
  34. 34.
    Cercignani, C., Kremer, G.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhäusser, Berlin (2002)CrossRefGoogle Scholar
  35. 35.
    Pérez-Fuentes, C., Garzó, V.: Influence of a drag force on linear transport in low-density gases. Stability analysis. Physica A 410, 428–438 (2014)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  37. 37.
    Garzó, V.: Grad’s moment method for a granular fluid at moderate densities: Navier-Stokes transport coefficients. Phys. Fluids 25, 043301 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Brilliantov, N.V., Pöschel, T.: Hydrodynamics and transport coefficients for dilute granular gases. Phys. Rev. E 67, 061304 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Brey, J.J., Cubero, D.: Hydrodynamic transport coefficients of granular gases. In: Pöschel, T., Luding, S. (eds.) Granular Gases. Lectures Notes in Physics, vol. 564, pp. 59–78. Springer (2001)Google Scholar
  40. 40.
    Brey, J.J., Dufty, J.W., Santos, A.: Kinetic models for granular flow. J. Stat. Phys. 97, 281–322 (1999)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)ADSCrossRefGoogle Scholar
  42. 42.
    Welander, P.: On the temperature jump in a rarefied gas. Arkiv. Fysik. 7, 507–553 (1954)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation. Europhys. Lett. 48, 359–364 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    Brey, J.J., Ruiz-Montero, M.J.: Simulation study of the Green-Kubo relations for dilute granular gases. Phys. Rev. E 70, 051301 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Montanero, J.M., Santos, A., Garzó, V.: DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli, M. (ed.) 24th International Symposium on Rarefied Gas Dynamics, vol. 762, pp. 797–802. AIP Conference Proceedings (2005)Google Scholar
  46. 46.
    Brey, J.J., Ruiz-Montero, M.J., Maynar, P., García de Soria, M.I.: Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases. J. Phys.: Condens. Matter 17, S2489–S2502 (2005)ADSGoogle Scholar
  47. 47.
    Montanero, J.M., Santos, A., Garzó, V.: First-order Chapman-Enskog velocity distribution function in a granular gas. Physica A 376, 75–93 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Garzó, V., Santos, A., Montanero, J.M.: Modified Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A 376, 94–107 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Noskowicz, S.H., Bar-Lev, O., Serero, D., Goldhirsch, I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Brilliantov, N.V., Pöschel, T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424–430 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1999)CrossRefGoogle Scholar
  53. 53.
    Lun, C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)CrossRefGoogle Scholar
  56. 56.
    Kremer, G.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, Berlin (2010)CrossRefGoogle Scholar
  57. 57.
    Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Ann. Rev. Fluid Mech. 48, 429–458 (2016)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Gupta, V.K., Shukla, P., Torrilhon, M.: Higher-order moment theories for dilute granular gases of smooth hard spheres. J. Fluid Mech. 836, 451–501 (2018)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Carnahan, N.F., Starling, K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636 (1969)ADSCrossRefGoogle Scholar
  60. 60.
    Kremer, G.M., Marques Jr., W.: Fourteen moment theory for granular gases. Kinet. Relat. Models 4, 317–331 (2011)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Risso, D., Cordero, P.: Dynamics of rarefied granular gases. Phys. Rev. E 65, 021304 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    Bisi, M., Spiga, G., Toscani, G.: Grad’s equations and hydrodynamics for weakly inelastic granular gases. Phys. Fluids 16, 4235–4247 (2004)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Saha, S., Alam, M.: Non-Newtonian stress, collisional dissipation and heat flux in the shear flow of inelastic disks: a reduction via Grad’s moment method. J. Fluid Mech. 757, 251–296 (2014)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Brilliantov, N.V., Pöschel, T.: Self-diffusion in granular gases. Phys. Rev. E 61, 1716–1721 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    Goldhirsch, I., van Noije, T.P.C.: Green-Kubo relations for granular fluids. Phys. Rev. E 61, 3241–3244 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    Dufty, J.W.: Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow. J. Phys: Condens. Matter 12, A47–A56 (2000)ADSGoogle Scholar
  67. 67.
    Dufty, J.W., Garzó, V.: Mobility and diffusion in granular fluids. J. Stat. Phys. 105, 723–744 (2001)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Dufty, J.W., Brey, J.J., Lutsko, J.F.: Diffusion in a granular fluid. I. Theory. Phys. Rev. E 65, 051303 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    Dufty, J.W., Baskaran, A., Brey, J.J.: Linear response and hydrodynamics for granular fluids. Phys. Rev. E 77, 031310 (2008)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Baskaran, A., Dufty, J.W., Brey, J.J.: Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E 77, 031311 (2008)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Baskaran, A., Dufty, J.W., Brey, J.J.: Kinetic theory of response functions for the hard sphere granular fluid. J. Stat. Mech. P12002 (2007)Google Scholar
  72. 72.
    Dufty, J.W., Brey, J.J.: Green-Kubo expressions for a granular gas. J. Stat. Phys. 109, 433–448 (2002)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Lutsko, J.F., Brey, J.J., Dufty, J.W.: Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    Kumaran, V.: Velocity autocorrelations and viscosity renormalization in sheared granular flows. Phys. Rev. Lett. 96, 258002 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    Kumaran, V.: Dynamics of a dilute sheared inelastic fluid. I. Hydrodynamic modes and velocity correlation functions. Phys. Rev. E 79, 011301 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Otsuki, M., Hayakawa, H.: Long-time tails for sheared fluids. J. Stat. Mech. L08003 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain

Personalised recommendations