Advertisement

Commentary on Affect, Cognition and Metacognition in Mathematical Modelling

  • Jonei Cerqueira BarbosaEmail author
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

In this chapter, I react to the texts by Chamberlin (2019); Vorhölter et al. (2019); Magiera and Zawojewski (2019); and Warner and Schorr (2019), which provide powerful insights to analyze mathematical modelling in terms of affect, cognition, and metacognition. Particularly, I use the sociocultural and sociocritical lens to discuss the ideas presented by the authors and to propose other questions.

Keywords

Affect Cognition Metacognition Sociocultural perspective Sociocritical perspective 

References

  1. Alrø, H., & Skovsmose. (2002). Dialogue and learning in mathematics education: Intention, reflection, critique. Dordrecht: Kluwer.Google Scholar
  2. Barbosa, J. C. (2010). The students’ discussions in the modeling environment. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 365–372). New York: Springer.CrossRefGoogle Scholar
  3. Bernstein, B. (2000). Pedagogy, symbolic control and identity: Theory, research, critique (Rev ed.). London: Rowman & Littlefield.Google Scholar
  4. Blum, W., & Leiß, D. (2006). “Filling up” – The problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In Bosch, M. (Ed.), CERME-4 – Proceedings of the fourth conference of the European Society for Research in mathematics education, Guixol.Google Scholar
  5. Bochichhio, R. (2017, July 10). Ponte Salvador-Itaparica: edital sai em outubro. A Tarde. Retrieved from: http://atarde.uol.com.br/
  6. Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86–95.CrossRefGoogle Scholar
  7. Chamberlin, S. A. (2019). The construct of affect in mathematical modelling. In [to be completed]. Google Scholar
  8. Czocher, J. A. (2014). Towards building a theory of mathematical modelling. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME38 and PME-NA36 (Vol. 2, pp. 353–360). Vancouver: PME.Google Scholar
  9. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911.CrossRefGoogle Scholar
  10. Glasersfeld, E. (2005). Thirty years of radical constructivism. Constructivist Foundations, 1(1), 9–12.Google Scholar
  11. Hannula, M. S. (2014). Affect in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education. Dordrecht: Springer.Google Scholar
  12. Hannula, M. S., Di Martino, P., Pantziara, M., Zhang, Q., Morselli, F., Heyd-Metzuyanim, E., Lutovac, S., Kaasila, R., Middleton, J. A., Jansen, A., & Goldin, G. A. (2016). Attitudes, beliefs, motivation and identity in mathematics education: An overview of the field and future directions (ICME-13 Topical Surveys). Hamburg: SpringerOpen.Google Scholar
  13. Harré, R. (2009). The second cognitive revolution. In K. Leidlmair (Ed.), After cognitivism: A reassessment of cognitive science and philosophy (pp. 181–187). New York: Springer.CrossRefGoogle Scholar
  14. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(3), 302–310.CrossRefGoogle Scholar
  15. Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying the teaching and learning of mathematics. Educational Studies in Mathematics, 46, 87–113.CrossRefGoogle Scholar
  16. Lerman, S. (2010). Theories of mathematics education: Is plurality a problem? In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 99–109). Heidelberg: Springer.CrossRefGoogle Scholar
  17. Magiera, M. T., & Zawojewski, J. S. (2019). Designing research settings for the study of metacognitive activity: A case for small group mathematical modeling. In [to be completed]. Google Scholar
  18. Oliveira, A. M. P., & Barbosa, J. C. (2013). Mathematical modelling, mathematical content and tensions in discourses. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 67–76). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. A project of the National Council of Teachers of Mathematics (pp. 334–370). New York: Macmillan.Google Scholar
  20. Schukajlow, S., Kaiser, G., & Stilman, G. (2018). Empirical research on teaching and learning of mathematical modelling: a survey on the current state-of-the-art. ZDM Mathematics Education. Advance online publication.  https://doi.org/10.1007/s11858-018-0933-5.CrossRefGoogle Scholar
  21. Sfard, A. (2007). Commognition: Thinking as communicating, the case of mathematics. New York: Cambridge University Press.Google Scholar
  22. Skovsmose, O. (2011). An invitation to critical mathematics education. Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  23. Souza, E. G., & Barbosa, J. C. (2014). Some implications of Wittgenstein’s idea of use for learning mathematics through mathematical modelling. International Journal for Research in Mathematics Education, 4, 114–138.Google Scholar
  24. Vorhölter, K., Krüger, A., & Wendt, L. (2019). Metacognition in mathematical modeling – An overview. In [to be completed]. Google Scholar
  25. Warner, L. B., & Schorr, R. Y. (2019). Exploring the connection between engagement structures and the development of mathematical ideas. In [to be completed]. Google Scholar
  26. Wittgenstein, L. (2001). Philosophical investigations (3rd ed.). Oxford: Blackwell.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal University of BahiaSalvadorBrazil

Personalised recommendations