Advertisement

Lignocellulosic Biomass from Sabkha Native Vegetation: A New Potential Source for Fiber-Based Bioenergy and Bio-Materials

  • Sahar Salem
  • Saida Nasri
  • Sourour Abidi
  • Abderrazek Smaoui
  • Nizar Nasri
  • Pere Mutjé
  • Karim Ben HamedEmail author
Chapter
Part of the Tasks for Vegetation Science book series (TAVS, volume 49)

Abstract

Sabkhas are home to many xero-halophytes that could be considered renewable resources for various fiber industries. Lignocellulosic fibers of these plants are proposed as raw material for bioenergy production. Nowadays, ethanol is the major biofuel in use. In this paper, fiber composition of 21 xero-halophytic species from Tunisian sabkhas was evaluated using Ankom 200 Fiber Analyzer and compared with that obtained by other studies. The lignocellulosic biomass of xero-halophytes can be considered as an attractive raw material for the future application for the production of bioethanol, paper of good quality, and reinforcement polymers. Two perennial species are considered an important source of bioethanol production which are Sarcocornia fruticosa and Aristida pungens. Suaeda fruticosa from Tunisia can be used in the production of high-quality lightweight paper.

Keywords

Bioenergy Biofuel Fibers Lignocellulosic biomass Sabkha Xero-halophytic species 

References

  1. Abdul Khalil HPS, Sohra Hossain M, Rosamah E, Azli NA, Saddon N, Davoudpoura Y, Nazrul Islam M, Dungani R (2015) The role of soil properties and it’s interaction towards quality plant fiber: a review. Renew Sust Energ Rev 43:1006–1015CrossRefGoogle Scholar
  2. Abideen Z, Ansari R, Ajmal Khan M (2011) Halophytes: potential source of lignocellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822CrossRefGoogle Scholar
  3. Belhassen R, Boufi S, Vilaseca F, Lopez JP, Mendez JA, Franco E, Pèlach MA, Mutjé P (2009) Biocomposites based on Alfa fibers and starch- based biopolymer. Polym Adv Technol 20:1068–1075CrossRefGoogle Scholar
  4. Ben Hamed K, Magné C, Abdelly C (2014) From halophyte research to halophytes farming. Sabkha Ecosystems: Series: Tasks for Vegetation Science (Vol. 47) Volume IV: Cash Crop Halophyte and Biodiversity Conservation., édition Khan M.A, Böer B, Öztürk M, Al Abdessalaam T.Z, Clüsener-Godt M, Gul B. Springer (ISBN 978–94–007-7410-0), pp 135–142.bio-energy in China coastal zone. Herald Journal of Agriculture and Food Science Research Vol. 1 (3), pp. 044–051 November, 2012Google Scholar
  5. Borchani KF, Carrot C, Jaziri M (2015) Biocomposites of Alfa fibers dispersed in the Mater-BiR type bioplastic: morphology, mechanical and thermal properties. Compos Part A 78:371–379CrossRefGoogle Scholar
  6. Christiansen RC (2008) Sea asparagus can be oil feedstock. Biodiesel Magazine, July 2008Google Scholar
  7. Eshel A, Zilberstein A, Alekparov C, Eilam T, Oren I, Sasson Y, Valentini R, Waisel Y (2010) Biomass production by desert halophytes: alleviating the pressure on food production. Recent Advanced in Energy and Environment ISSN: 1790–5095 ISBN: 978–960–474-159-5Google Scholar
  8. Espinach FX, Julian F, Alcalà M, Tresserras J, Mutjé P (2014) High stiffness performance alpha- grass pulp fiber reinforced thermoplastic starch- based fully biodegradable composites. Bioresources 9(1):738–755Google Scholar
  9. Espinach FX, Delgado-Aguilar M, Puig J, Julian F, Boufi S, Mutj P (2015) Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Compos Part B 81:98–106CrossRefGoogle Scholar
  10. Gironès J, Espinach FX, Pellicer N, Alcalà M, Tresserras J, Mutjé P (2013) High performance tensile strength alpha-grass reinforced thermoplastic starch- based fully biodegradable composites. Bioresources 8(4):6121–6135CrossRefGoogle Scholar
  11. Hamza S, Saada H, Charrier B, Ayeda N, Charrier-El Bouhtoury F (2013) Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Ind Crop Prod 49:357–365CrossRefGoogle Scholar
  12. Koyro H-W, Lieth H, Gul B, Ansari R, Huchzermeyer B, Abideen Z, Hussain T, Kahn M (2014) Importance of the diversity within the halophytes to agriculture and land management in arid and semiarid countries. In: Khan M (ed) Sabkha ecosystems: volume IV: cash crop halophyte and biodiversity conservation, vol 47. Springer, Dordrecht, pp 175–198CrossRefGoogle Scholar
  13. Liu XZ, Wang CZ, SU Q, Li CK (2012) The potential resource of halophytes for developingGoogle Scholar
  14. Marrakchi Z, Khiari R, Oueslati H, Mauret E, Mhenni F (2011) Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima)- effects of refining process. Ind Crop Prod 34:1572–1582CrossRefGoogle Scholar
  15. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83CrossRefGoogle Scholar
  16. Ridzuan MJM, Abdul Majid MS, Afendi M, Aqmariah Kanafiah SN, Zahri JM, Gibson AG (2016) Characterization of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des 89:839–847CrossRefGoogle Scholar
  17. Schellbach SL, Monteiro SN, Drelich JW (2016) A novel method for contact angle measurements on natural fibers. Mater Lett 164:599–604CrossRefGoogle Scholar
  18. Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK (2016) Halophytes as bioenergy crops. Front Plant Sci 7:1372.  https://doi.org/10.3389/fpls.2016.01372 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Van Soest PJ, Robertson JB, Lewis B-A (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch carbohydrates in relation to animal nutrition. J Dairy Sci 74:3583–3597CrossRefGoogle Scholar
  20. Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153CrossRefGoogle Scholar
  21. Xu C, Tang X, Shao H, Wang H (2016) Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Curr Genomics 17:207–214CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sahar Salem
    • 1
    • 2
  • Saida Nasri
    • 3
  • Sourour Abidi
    • 3
  • Abderrazek Smaoui
    • 1
  • Nizar Nasri
    • 2
  • Pere Mutjé
    • 4
  • Karim Ben Hamed
    • 1
    Email author
  1. 1.Laboratory of Extremophile PlantsCentre of Biotechnology of Borj CedriaHammam LifTunisia
  2. 2.Faculty of Sciences of TunisUniversity of Tunis El-ManarTunisTunisia
  3. 3.Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie (INRAT)Université de CarthageArianaTunisia
  4. 4.LEPAMAP Group, Department of Chemical EngineeringUniversity of GironaGironaSpain

Personalised recommendations