Advertisement

Mangrove Biogeography of the Indo-Pacific

  • P. SaengerEmail author
  • P. Ragavan
  • C.-R. Sheue
  • J. López-Portillo
  • J. W. H. Yong
  • T. Mageswaran
Chapter
Part of the Tasks for Vegetation Science book series (TAVS, volume 49)

Abstract

Studies on biogeography are useful to understand the present and past distribution patterns of biological diversity and their underlying environmental and historical causes. The mangrove realm, largely confined to sheltered tropical and subtropical coastlines within latitudes of around 32°N and 38°S, is divided longitudinally into an Atlantic realm and an Indo-Pacific realm. Because of the relatively recent closure of the Central American Isthmus, a small incursion of the Atlantic realm species has occurred into the Indo-Pacific realm along the tropical and subtropical American Pacific coast and spread north and south since the last glaciation. Although the biogeography of mangroves has been widely discussed, recent investigations of mangrove floristics and genetic diversity using molecular studies warrant a further comprehensive account of the biogeography of mangroves. Considering these facts, the biogeography of the Indo-West Pacific (IWP) mangroves has been examined in detail, and the Atlantic East Pacific mangrove region (AEP) has only been briefly discussed. The difference in species richness between the IWP and the AEP is evidence of the effectiveness of the African land mass and the East Pacific Ocean barriers. Within the IWP, two trends in relation to mangrove species richness can be identified: first, maximal species richness which occurs along the shorelines of Makassar Strait, between Borneo and Sulawesi in Indonesia, and second, the marked attenuation of species numbers with increasing latitude generally related to limiting temperatures. The contemporary and historical processes leading to these trends are summarized and discussed. Finally, the threats to the mangroves of the various regions within the IWP are subsequently briefly reviewed, and given the ecological and economic values of mangroves, the potential of mangrove restoration/rehabilitation to offset mangrove losses is also evaluated.

Keywords

Biogeography Diversity Mangrove Rehabilitation Restoration Species richness 

References

  1. Allen JA (1998) Mangroves as alien species: the case of Hawaii. Glob Ecol Biogeogr Lett 7:61–71Google Scholar
  2. Almahasheer H (2018) Spatial coverage of mangrove communities in the Arabian Gulf. Environ Monit Assess 190:85.  https://doi.org/10.1007/s10661-018-6472-2 CrossRefPubMedGoogle Scholar
  3. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrão EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525PubMedGoogle Scholar
  4. Aung TT, Than MM, Katsuhiro O, Yukira M (2011) Assessing the status of three mangrove species restored by the local community in the cyclone-affected area of the Ayeyarwady Delta, Myanmar. Wetl Ecol Manag 19:195–208Google Scholar
  5. Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 10:421–452Google Scholar
  6. Banyikwa FF (1986) The geographical distribution of mangrove forests along the East African coast. In: Status and utilisation of mangroves. Proceedings of a workshop on ‘Save the mangrove ecosystems in Tanzania’, 21–22 February 1986, Dar es Salaam. Published by the Faculty of Science, University of Dar es SalaamGoogle Scholar
  7. Barreto MB, Barreto-Pittol E (2012) First report of Rhizophora racemosa Meyer (Rhizophoraceae) in the mangrove forests of the Venezuelan Caribbean Coast. Interciencia 37:133–137Google Scholar
  8. Béguinot A (1918) Sulla constituzione dei boschi di Mangrovie nella Somalia italiana. Boll R Soc Geogr Ital 7:295–306Google Scholar
  9. Belal IEH (2004) Replacement of corn with mangrove seeds in bluespot mullet Valamugil seheli diets. Aquac Nutr 10:25–30Google Scholar
  10. Biswas SR, Malik AU, Choudhury JK, Nishat A (2009) A unified framework for the restoration of Southeast Asian mangroves – bridging ecology, society and economics. Wetl Ecol Manag 17:365–383Google Scholar
  11. Blasco F, Aizpuru M, Gers C (2001) Depletion of mangroves of continental Asia. Wetl Ecol Manag 9:245–256Google Scholar
  12. Breteler FJ (1969) The Atlantic species of Rhizophora. Acta Bot Neerl 18:434–441Google Scholar
  13. Breteler FJ (1977) America’s Pacific species of Rhizophora. Acta Bot Neerl 26:225–230Google Scholar
  14. Castillo-Cárdenas MF, Díaz-Gonzales F, Cerón-Souza I, Sanjur O, Toro-Perea N (2015) Jumping a geographical barrier: diversification of the mangrove species Pelliciera rhizophorae (Tetrameristaceae) across the Central American Isthmus. Tree Genet Genomes 11:822.  https://doi.org/10.1007/s11295-014-0822-1 CrossRefGoogle Scholar
  15. Cerón-Souza I, Toro-Perea N, Cárdenas-Henao H (2005) Population genetic structure of neotropical mangrove species on the Colombian Pacific coast: Avicennia germinans (Avicenniaceae). Biotropica 37:258–265Google Scholar
  16. Cerón-Souza I, Rivera-Ocasio E, Medina E, Jiménez JA, McMillan WO, Bermingham E (2010) Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae). Amer J Bot 97:945–957Google Scholar
  17. Chen X, Lin P, Lin Y (1996) Mating system and spontaneous mutation rates for chlorophyll deficiency in populations of the mangrove Kandelia candel. Hereditas 125:47–52Google Scholar
  18. Chen L, Wang W, Li QQ, Zhang Y, Yang S, Osland MJ, Huang J, Peng C (2017) Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 8(6):e01865Google Scholar
  19. Chowdhury R, Favas PJC, Jonathan MP, Venkatachalam P, Raja P, Sarkar SK (2017) Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban wetland. Mar Pollut Bull 124:1078–1088PubMedGoogle Scholar
  20. Ciferri R (1939) La associazioni del litorale marino della Somalia meridionale. Riv Biol Colon 2:5–42Google Scholar
  21. Clarke PJ (1993) Dispersal of grey mangrove (Avicennia marina) propagules in south-eastern Australia. Aquat Bot 45:195–104Google Scholar
  22. Cooper WE, Kudo H, Duke NC (2016) Bruguiera hainesii C.G.Rogers (Rhizophoraceae), an endangered species recently discovered in Australia. Austrobaileya 9:481–488Google Scholar
  23. Cornes MD, Cornes CD (1989) The wild flowering plants of Bahrain. Immel Publishing, LondonGoogle Scholar
  24. Dale IR (1938) Kenya mangroves. Zeitschr Weltforstwirtschaft 5:413–421Google Scholar
  25. Das S (2017) Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev 94:492–502Google Scholar
  26. Das P, Basak UC, Das AB (1997) Restoration of the mangrove vegetation in the Mahanadi delta, Orissa, India. Mangrove Salt Marshes 1:155–161Google Scholar
  27. de Graaf GJ, Xuan TT (1998) Extensive shrimp farming, mangrove clearance and marine fisheries in the southern provinces of Vietnam. Mangrove Salt Marshes 2:159–166Google Scholar
  28. De Ryck DJR, Koedam N, Van der Stocken T, van der Ven R, Adams J, Triest L (2016) Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Mar Ecol Prog Ser 545:123–134Google Scholar
  29. Dodd RS, Fromard F, Rafii ZAA, Blasco F (1995) Biodiversity among West African Rhizophora: foliar wax chemistry. Bichem Syst Ecol 23:859–868Google Scholar
  30. Duke NC (1995) Genetic diversity, distributional barriers and rafting continents – more thoughts on the evolution of mangroves. Hydrobiologia 295:167–181Google Scholar
  31. Duke NC (2006) Australia’s mangroves: the authoritative guide to Australia’s mangrove plants. University of Queensland, BrisbaneGoogle Scholar
  32. Duke NC (2010) Overlap of eastern and western mangroves in the South-western Pacific: hybridization of all three Rhizophora (Rhizophoraceae) combinations in New Caledonia. Blumea 55:171–188Google Scholar
  33. Duke NC, Kudo H (2018) Bruguiera × dungarra, a new hybrid between mangrove species B. exaristata and B. gymnorhiza (Rhizophoraceae) recently discovered in north-east Australia. Blumea 63:279–285Google Scholar
  34. Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr 7:27–47Google Scholar
  35. Ellison AM (2004) Wetlands of Central America. Wetl Ecol Manag 12:3–55Google Scholar
  36. Ellison JC (2009) Wetlands of the Pacific Island region. Wetl Ecol Manag 17:169–206Google Scholar
  37. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr Lett 8:95–115Google Scholar
  38. El-Tarabily KA, Youssef T (2011) Improved growth performance of the mangrove Avicennia marina seedlings using a 1-aminocyclopropane-1-carboxylic acid deaminase-producing isolate of Pseudoalteromonas maricaloris. Plant Growth Regul.  https://doi.org/10.1007/s10725-011-9618-6 Google Scholar
  39. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Wetl 17:71–84Google Scholar
  40. Faye B (1993) Mangrove, sécheresse and dromadaire. Sécheresss 4:47–55Google Scholar
  41. Field CD (ed) (1996) Restoration of mangrove ecosystems. International Society for Mangrove Ecosystems/ITTO, OkinawaGoogle Scholar
  42. Friess DA (2016) Ecosystem services and disservices of mangrove forests: insights from historical colonial observations. Forests 7:183.  https://doi.org/10.3390/f7090183 CrossRefGoogle Scholar
  43. Fujimoto K, Miyagi T, Kikuchi T, Kawana T (1996) Mangrove habitat formation and response to Holocene sea-level changes on Kosrae Island. Micronesia Mangroves Salt Marshes 1:47–57Google Scholar
  44. Gentry AH (1982) Phytogeographic patterns as evidence for a Choco refuge. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 112–136Google Scholar
  45. Ghosh A, Schmidt S, Fickert T, Nüsser M (2015) The Indian Sundarban mangrove forests: history, utilization, conservation strategies and local perception. Diversity 7:149–169Google Scholar
  46. Ge X-J, Sun M (2001) Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetlands Ecology and Management 9:203–209Google Scholar
  47. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2010) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr.  https://doi.org/10.1111/j.1466-8238.2010.00584.x Google Scholar
  48. Hamilton S, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century. Glob Ecol Biogeogr 25:729–738Google Scholar
  49. Haque MZ, Reza MIH (2017) Salinity intrusion affecting the ecological integrity of Sundarbans mangrove forests, Bangladesh. Int J Conserv Sci 8:131–144Google Scholar
  50. Hauff RD, Ewel KC, Jack J (2006) Tracking human disturbance in mangroves: estimating harvest rates on a Micronesian Island. Wetl Ecol Manag 14:95–105Google Scholar
  51. Hou D (1960) A review of the genus Rhizophora with special reference to the Pacific species. Blumea 10:625–634Google Scholar
  52. Hsueh M-L, Lee H-H (2000) Diversity and distribution of the mangrove forests in Taiwan. Wetl Ecol Manag 8:233–242Google Scholar
  53. Huang Y, Zhu C, Li X, Hu L, Tan F, Zhou R, Shi S (2012) Differentiated population structure of a genetically depauperate mangrove species Ceriops tagal revealed by both Sanger and deep sequencing. Aquat Bot 101:46–54Google Scholar
  54. Hughes RH, Hughes JS (1992) Répertoire des zones humides d’Afrique. IUCN/UNEP/WCMC, Cambridge. 808 ppGoogle Scholar
  55. Hussain SA, Badola R (2008) Valuing mangrove ecosystem services: linking nutrient retention function of mangrove forests to enhanced agroecosystem production. Wetl Ecol Manag 16:441–450Google Scholar
  56. Iftekhar MS, Takama T (2008) Perceptions of biodiversity, environmental services, and conservation of planted mangroves: a case study on Nijhum Dwip Island, Bangladesh. Wetl Ecol Manag 16:119–137Google Scholar
  57. Islam MS, Lian CL, Kameyama N, Wu B, Hogetsu T (2006) Development and characterization of ten new microsatellite markers in a mangrove tree species Bruguiera gymnorrhiza (L.). Mol Ecol Notes 6:30–32Google Scholar
  58. Islam MS, Lian C, Kameyama N, Hogetsu T (2014) Low genetic diversity and limited gene flow in a dominant mangrove tree species (Rhizophora stylosa) at its northern biogeographical limit across the chain of three Sakishima islands of the Japanese archipelago as revealed by chloroplast and nuclear SSR analysis. Plant Syst Evol 300:1123–1136Google Scholar
  59. Jiménez JA (1987) A clarification on the existence of Rhizophora species along the Pacific coast of Central America. Brenesia 28:25–32Google Scholar
  60. Kado T, Fujimoto A, Giang LH, Tuan M, Hong PN, Harada K, Tachida H (2004) Genetic structures of natural populations of three mangrove species, Avicennia marina, Kandelia candel and Lumnitzera racemosa, in Vietnam revealed by maturase sequences of plastid DNA. Plant Species Biol 19:91–99Google Scholar
  61. Keay RWJ (1953) Rhizophora in West Africa. Kew Bull 8:121–127Google Scholar
  62. Koechlin J, Guillamet J-L, Morat P (1974) Flore et végétation de Madagascar. Cramer, Vaduz, p 687Google Scholar
  63. Kumar A, Khan M, Muqtadir A (2010a) Distribution of mangroves along the Red Sea Coast of the Arabian Peninsula: part 1: the Northern Coast of Western Saudi Arabia. Earth Sci India 3:28–42Google Scholar
  64. Kumar A, Khan M, Muqtadir A (2010b) Distribution of mangroves along the Red Sea Coast of the Arabian Peninsula: part 2: the Southern Coast of Western Saudi Arabia. Earth Sci India 3:154–162Google Scholar
  65. Kumar A, Khan M, Muqtadir A (2011) Distribution of mangroves along the Red Sea Coast of the Arabian Peninsula: part 3: Coast of Yemen. Earth Sci India 4:29–38Google Scholar
  66. Lambs L, Léopold A, Zeller B, Herteman M, Fromard F (2011) Tracing sewage water by 15N in a mangrove ecosystem to test its bioremediation ability. Rapid Commun Mass Spectrom 15:2777–2784Google Scholar
  67. Li MS, Lee SY (1997) Mangroves of China: a brief review. Rorest Ecol Manag 96:241–259Google Scholar
  68. Li X, Duke NC, Yang Y, Huang L, Zhu Y, Zhang Z, Zhou R, Zhong C, Huang Y, Shi S (2016) Re-evaluation of phylogenetic relationships among species of the mangrove genus Avicennia from Indo-West Pacific based on multilocus analyses. PLoS One 11(10):e0164453PubMedPubMedCentralGoogle Scholar
  69. Loneragan NR, Bunn SE, Kellaway DM (1997) Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar Biol 130:289–300Google Scholar
  70. López-Portillo J, Lewis RR III, Saenger P, Rovai A, Koedam N, Dahdouh-Guebas F, Agraz-Hernández C, Rivera-Monroy VH (2017) Mangrove forest restoration and rehabilitation. In: Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR (eds) Mangrove ecosystems: a global biogeographic perspective. Springer, Berlin, pp 301–345Google Scholar
  71. Maguire TL, Saenger P (2000) The taxonomic relationships within the genus Excoecaria L. (Euphorbiaceae) based on leaf morphology and rDNA sequence data. Wetl Ecol Manag 8:19–28Google Scholar
  72. Maguire TL, Saenger P, Baverstock P, Henry R (2000) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Evol 9:1853–1862Google Scholar
  73. Mandura AS, Khafaji AK (1993) Human impact on the mangrove of Khor Farasan Island, Southern Red Sea coast of Saudi Arabia. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol I. Springer Netherlands, Dordrecht, pp 353–361Google Scholar
  74. Mangora MM (2011) Poverty and institutional management stand-off: a restoration and conservation dilemma for mangrove forests of Tanzania. Wetl Ecol Manag 19:533–543Google Scholar
  75. Manurung J, Siregar IZ, Kusmana C, Dwiyanti FG (2017) Genetic variation of the mangrove species Avicennia marina in heavy metal polluted estuaries of Cilegon Industrial Area, Indonesia. Biodiversitas 18:1109–1115Google Scholar
  76. McGuinness KA (1997) Dispersal, establishment and survival of Ceriops tagal propagules in a north Australian mangrove forest. Oecologia 109:80–87Google Scholar
  77. Minobe S, Fukui S, Saiki R, Kajita T, Changtragoon S, Ab Shukor NA, Latiff A, Ramesh BR, Koizumi O, Yamazaki T (2010) Highly differentiated population structure of a mangrove species, Bruguiera gymnorhiza (Rhizophoraceae) revealed by one nuclear GapCp and one chloroplast intergenic spacer trnF-trnL. Conserv Genet 11:301–310Google Scholar
  78. Moore GE, Grizzle RE, Ward KM, Alshihi RM (2015) Distribution, pore-water chemistry, and stand characteristics of the mangroves of the United Arab Emirates. J Coast Res 31:957–963Google Scholar
  79. Naskar K, Mandal R (1999) Ecology and diversity of Indian mangroves. 2 Vols., Daya Publishing House, DelhiGoogle Scholar
  80. Ngoile MAK, Shunula JP (1992) Status and exploitation of the mangrove and associated fishery resources in Zanzibar. Hydrobiologia 247:229–234Google Scholar
  81. Ono J, Yong JWH, Takayama K, Saleh MNB, Wee AKS, Asakawa T, Yllano OB, Salmo SG, Meenakshisundaram SH, Watano Y, Webb EL, Kajita T (2016) Bruguiera hainesii, a critically endangered mangrove species, is a hybrid between B. cylindrica and B. gymnorhiza (Rhizophoraceae). Conserv Genet 17:1137–1144.  https://doi.org/10.1007/s10592-016-0849-y CrossRefGoogle Scholar
  82. Ormond RFG, Price ARG, Dawson-Shepherd AR (1988) The distribution and character of mangroves in the Red Sea, Arabian Gulf and Southern Arabia. In: Proceedings of the UNDP/UNESCO Regional Mangrove Project, Colombo, 11–14 November 1986, pp 125–130Google Scholar
  83. Parani M, Lakshmi M, Elango S, Ram N, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves II. Intra and inter specific variation in Avicennia revealed by RAPD and RFLP markers. Genome 40:487–495PubMedGoogle Scholar
  84. Pashaei R, Gholizadeh M, Iran KJ, Hanifi A (2015) The effects of oil spills on ecosystem at the Persian Gulf. Int J Rev Life Sci 5:82–89Google Scholar
  85. Primavera JH, Esteban JMA (2008) A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl Ecol Manag 16:345–358Google Scholar
  86. Quisthoudt K, Schmitz N, Randin CF, Dahdouh-Guebs F, Robert EMR, Koedam N (2012) Temperature variation among mangrove latitudinal range limits worldwide. Trees 26:1919–1931Google Scholar
  87. Ragavan R, Saxena A, Jayaraj RSC, Mohan PM, Pavichandran K, Saravanan S, Vijayaraghavan A (2016) A review of the mangrove floristics of India. Taiwania 61:224–242Google Scholar
  88. Ragavan R, Zhou R, Ng WL, Rana TS, Mageswaran T, Mohan PM, Saxena A (2017) Natural hybridization in mangroves – an overview. Bot J Linn Soc 185:208–224Google Scholar
  89. Rahman MM, Khan MNI, Hoque AKF, Ahmed I (2015) Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetl Ecol Manag 23:269–283Google Scholar
  90. Rahman MM, Jiang Y, Irvine K (2018) Assessing wetland services for improved development decision-making: a case study of mangroves in coastal Bangladesh. Wetl Ecol Manag 26(4):563–580.  https://doi.org/10.1007/s11273-018-9592-0 CrossRefGoogle Scholar
  91. Rasolofo VM (1993) Les mangroves de Madagascar. In: Diop ES (ed) Conservation et utilisation rationelle des forêts de mangroves de l’Amérique Latine and de l’Afrique, vol. II. Version française du Rapport sur l’Afrique. ITTO/ISME, Okinawa, pp 248–265Google Scholar
  92. Rasowo J (1992) Mariculture development in Kenya: alternatives to siting ponds in the mangrove ecosystem. Hydrobiologia 247:209–214Google Scholar
  93. Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Natl Acad Sci 113:344–349PubMedGoogle Scholar
  94. Ricklefs RE, Latham RE (1993) Global patterns of diversity in mangrove floras. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. Historical and geographical perspectives. University of Chicago Press, Chicago, pp 215–233Google Scholar
  95. Rogers K, Boon PI, Branigan S, Duke NC, Field CD, Fitzsimons JA, Kirkman H, Mackenzie JR, Saintilan N (2016) The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Mar Policy 72:139–155Google Scholar
  96. Rossi G (1981) Le Quaternaire littoral du Kenya. Z Geomorphol 25:33–53Google Scholar
  97. Ruwa RK (1993) Les mangroves du Kenya. In: Diop ES (ed) Conservation et utilisation rationelle des forêts de mangroves de l’Amérique Latine and de l’Afrique, vol. II. Version française du Rapport sur l’Afrique. ITTO/ISME, Okinawa, pp 230–247Google Scholar
  98. Saenger P (1998) Mangrove vegetation: an evolutionary perspective. Mar Freshw Res 49:277–286Google Scholar
  99. Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer Academic Publishers, DordrechtGoogle Scholar
  100. Saenger P (2011) Mangroves: sustainable management in Bangladesh. In: Günter S, Weber M, Stimm B, Mosandl R (eds) Silviculture in the tropics. Springer, Berlin, pp 339–347Google Scholar
  101. Saenger P, Moverley J (1985) Vegetative phenology of mangroves along the Queensland coastline. Proc Ecol Soc Aust 13:257–265Google Scholar
  102. Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litter fall. Oecologia 96:293–299PubMedGoogle Scholar
  103. Saenger P, Specht MM, Specht RL, Chapman VJ (1977) Chapter 15: Mangal and coastal salt marsh communities in Australasia. In: Chapman VJ (ed) Wet coastal ecosystems. Elsevier Scientific Publishing Company, Amsterdam, pp 293–345Google Scholar
  104. Salmo SG, Lovelock C, Duke NC (2013) Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia 720:1–18Google Scholar
  105. Sandoval-Castro E, Dodd RS, Riosmena-Rodríguez R, Enríquez-Paredes LM, Tovilla-Hernández C, López-Vivas JM, Aguilar-May B, Muñiz-Salazar R (2014) Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast. PLoS One 9(4):e93358PubMedPubMedCentralGoogle Scholar
  106. Santamaría-Damián S, Romero-Berny EI, Tovilla-Hernández C, Gallegos-Martínez ME, De la Presa-Pérez JC (2016) Nuevos registros del mangle centroamericano Avicennia bicolor Standl. (Acanthaceae) en la costa pacífica del sureste mexicano con notas sobre su distribución y estatus de conservación. Lacandonia 10:19–24Google Scholar
  107. Sheue CR, Liu HY, Yong JWH (2003) Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 52:287–294Google Scholar
  108. Sheue CR, Yong JWH, Yang YP (2005) The Bruguiera (Rhizophoraceae) species in the mangroves of Singapore, especially on the new record and the rediscovery. Taiwania 50:251–260Google Scholar
  109. Sheue CR, Yang YP, Liu HY, Chou FS, Chang SC, Saenger P, Mangion CP, Wightman G, Yong JWH, Tsai CC (2009a) Reevaluating the taxonomic status of Ceriops australis (Rhizophoraceae) based on morphological and molecular evidence. Bot Stud 50:89–100Google Scholar
  110. Sheue CR, Liu HY, Tsai CC, Rashid SMA, Yong JWH, Yang YP (2009b) On the morphology and molecular basis of segregation of two species Ceriops zippeliana Blume and C. decandra (Griff.) Ding Hou (Rhizophoraceae) from southeastern Asia. Blumea 54:220–227Google Scholar
  111. Sheue CR, Liu HY, Tsai CC, Yang YP (2010) Comparison of Ceriops pseudodecandra sp. nov. (Rhizophoraceae), a new mangrove species in Australasia, with related species. Bot Stud 51:237–248Google Scholar
  112. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, LondonGoogle Scholar
  113. Sugaya T, Yoshimaru H, Takeuchi T, Katsuta M, Fujimoto K, Changtragoon S (2003) Development and polymorphism of simple sequence repeat DNA markers for Bruguiera gymnorrhiza (L.) Lamk. Mol Ecol Notes 3:88–90Google Scholar
  114. Tan F, Huang Y, Ge X, Su G, Ni X, Shi S (2005) Population structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquat Bot 81:175–188Google Scholar
  115. Taylor MD, Gaston TF, Raoult V (2018) The economic value of fisheries harvest supported by saltmarsh and mangrove productivity in two Australian estuaries. Ecol Indic 84:701–709Google Scholar
  116. Thimdee W, Deein G, Sangrungruang C, Matsunaga K (2004) Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetl Ecol Manag 12:235–144Google Scholar
  117. Thimdee W, Deein G, Nakayama N, Suzuki Y, Matsunaga K (2008) δ13C and δ15N indicators of fish and shrimp community diet and trophic structure in a mangrove ecosystem in Thailand. Wetl Ecol Manag 16:463–470Google Scholar
  118. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  119. Tri NH, Adger WN, Kelly PM (1998) Natural resource management in mitigating climate impacts: the example of mangrove restoration in Vietnam. Glob Environ Chang 8:49–61Google Scholar
  120. Twilley RR, Rivera-Monroy V (2005) Developing performance criteria using simulation models of mangrove ecosystem restoration: a case study of the Florida Coastal Everglades. J Coast Res 40:79–93Google Scholar
  121. Tyagi AP (2003) Location and interseasonal variation in flowering, propagule setting and propagule size in mangroves species of the family Rhizophoraceae. Wetl Ecol Manag 11:167–174Google Scholar
  122. Van Oudenhoven APE, Siahainenia AJ, Sualia I, Tonneijck FH, Van der Ploeg S, de Groot RS (2014) Effects of different management regimes on mangrove ecosystem services in Java, Indonesia. Wageningen University, Wageningen and Wetlands International, BogorGoogle Scholar
  123. Vane CH, Harrison I, Kim AW, Moss-Hayes V, Vickers BP, Hong K (2009) Organic and metal contamination in surface mangrove sediments in South China. Mar Pollut Bull 58:134–144PubMedGoogle Scholar
  124. Voris HK (2000) Maps of Pleistocene sea levels in south-east Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167Google Scholar
  125. Vousden DHP, Price ARG (1985) Bridge over fragile waters. New Sci 1451:33–35Google Scholar
  126. Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Buebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236Google Scholar
  127. Wee AKS, Teo JXH, Chua JL, Takayama K, Asakawa T, Meenakshisundaram SH, Onrizal BA, Ardli ER, Sungkaew S, Suleiman M, Tung NX, Salmo SG, Yllano OB, Saleh MN, Soe KK, Tateishi Y, Watano Y, Tsuda Y, Kajita T, Webb EL (2017) Vicariance and oceanic barriers drive contemporary genetic structure of widespread mangrove species Sonneratia alba J. Sm in the Indo-West Pacific. Forests 8:483.  https://doi.org/10.3390/f8120483 CrossRefGoogle Scholar
  128. Wilcox BHR (1985) Angiosperm flora of the mangrove ecosystem of the Niger Delta. In: Wilcox BHR, Powell CP (eds) The mangroves ecosystem of the Niger delta: proceedings of a workshop. University of Port Harcourt, pp 34–44Google Scholar
  129. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, Duke NC, Zhou R, Shi S (2017) Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evol Biol 17:22.  https://doi.org/10.1186/s12862-016-0849-z CrossRefPubMedPubMedCentralGoogle Scholar
  130. Youssef T, Al Amry M, Youssef A (2000) Post-spill behavior in an oil contaminated mangrove stand Avicennia marina (Forrsk.) Vierh. in UAE. Arab Gulf J Sci Res 18:102–109Google Scholar
  131. Zahran MA (1977) Chapter 10: Africa A. wet formations of the African Red Sea coast. In: Chapman VJ (ed) Wet coastal ecosystems. Elsevier Scientific Publishing Company, Amsterdam, pp 215–231Google Scholar
  132. Zorini LO, Contini C, Jiddawi N, Ochiewo J, Shunula J, Cannicci S (2004) Participatory appraisal for potential community-based mangrove management in East Africa. Wetl Ecol Manag 12:87–102Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. Saenger
    • 1
    Email author
  • P. Ragavan
    • 2
  • C.-R. Sheue
    • 3
  • J. López-Portillo
    • 4
  • J. W. H. Yong
    • 5
  • T. Mageswaran
    • 6
  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.SERB-National Post Doctoral Fellow, CSIR-National Botanical Research FellowLucknowIndia
  3. 3.Department of Life Sciences and Center of Global Change BiologyNational Chung Hsing UniversityTaichungTaiwan
  4. 4.Instituto de Ecologia, A.C. (INECOL)XalapaMexico
  5. 5.ARC Centre for Mine Site Restoration, School of Biological SciencesUniversity of Western AustraliaPerthAustralia
  6. 6.National Centre for Sustainable Coastal Management, MoEFCCChennaiIndia

Personalised recommendations