Different Antioxidant Defense Systems in Halophytes and Glycophytes to Overcome Salinity Stress

  • Prabhakaran Soundararajan
  • Abinaya Manivannan
  • Byoung Ryong JeongEmail author
Part of the Tasks for Vegetation Science book series (TAVS, volume 49)


Metabolic processes, such as photosynthesis and respiration, lead to the generation of reactive oxygen species (ROS) as a side product. Chloroplasts, mitochondria, peroxisomes, glycosomes, and plasma membranes are the predominant metabolically active cell organelles which release ROS. Plants possess enzymatic and non-enzymatic antioxidant defense systems to maintain the ROS level. Enzymatic antioxidants include superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol/glutathione peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), aldehyde dehydrogenases (ALDH), and glutathione reductase (GR). Non-enzymatic antioxidants include ascorbate (AsA), glutathione (GSH), proline, and phenolic compounds. Under stress conditions, ROS are excessively generated in the plant. Based on the tolerance level to the salinity plants are divided into two categories: glycophytes and halophytes. Glycophytes are salt-sensitive plants and halophytes are salt-resistant plants. To adapt to the saline environment, halophytes have evolved varied anatomical features such as a salt gland or bladder, vacuolar compartmentalization, and stomata closure timing. In glycophytes under salt stress, higher lipid peroxidation, impairment of photosynthesis, osmotic stress, and ionic imbalance cause excessive generation of ROS. Perhaps higher accumulation and uncontrollable level of ROS leads to cross-reaction with other vital metabolic pathways and damages macromolecules such as lipids, proteins, and nuclei acids. Whereas in halophytes, ROS are spatial and temporal in nature. Plants with an efficient antioxidant system generally have a higher tolerance against stress. In this chapter, antioxidant defense mechanisms present in glycophytes and halophytes are described using model plants such as Arabidopsis thaliana (glycophyte) and Cakile maritima, Suaeda salsa L., and Thellungiella halophila (halophytes).


Antioxidant Glycophyte Halophyte Reactive oxygen species Salinity Stress 



Prabhakaran Soundararajan and Abinaya Manivannan were supported by a scholarship from the BK21 Plus Program, the Ministry of Education, Republic of Korea.


  1. Aleman F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176(6):768–774CrossRefGoogle Scholar
  2. Amor NB, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2007) Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritima. J Integr Plant Biol 49(7):982–992CrossRefGoogle Scholar
  3. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50(1):601–639CrossRefGoogle Scholar
  4. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107CrossRefGoogle Scholar
  5. Baranenko VV (2005) Superoxide dismutase in plant cells. Tsitologiia 48(6):465–474Google Scholar
  6. Bowler C, Alliotte T, De Loose M, Van Montagu M, Inzé D (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8(1):31–38PubMedPubMedCentralCrossRefGoogle Scholar
  7. Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 53–77Google Scholar
  8. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127(4):1354–1360PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chandrakuntal K, Shah AK, Thomas NM, Karthika V, Laloraya M, Kumar PG, Laloraya MM (2010) Blue light exposure targets NADPH oxidase to plasma membrane and nucleus in wheat coleoptiles. J Plant Growth Regul 29(2):232–241CrossRefGoogle Scholar
  10. Chaparzadeh N, D’Amico ML, Khavari-Nejad RA, Izzo R, Navari-Izzo F (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem 42(9):695–701PubMedCrossRefGoogle Scholar
  11. Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1(1):4–15Google Scholar
  12. Clausing G, Vickers K, Kadereit JW (2000) Historical biogeography in a linear system: genetic variation of Sea Rocket (Cakile maritima) and Sea Holly (Eryngium maritimum) along European coasts. Mol Ecol 9(11):1823–1833PubMedCrossRefPubMedCentralGoogle Scholar
  13. Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150PubMedCrossRefPubMedCentralGoogle Scholar
  14. Debez A, Koyro HW, Grignon C, Abdelly C, Huchzermeyer B (2008) Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiol Plant 133(2):373–385PubMedPubMedCentralCrossRefGoogle Scholar
  15. Desikan R, Soheila AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127(1):159–172PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dietz KJ, Jacquot JP, Harris G (2010) Hubs and bottlenecks in plant molecular signalling networks. New Phytol 188(4):919–938PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142(2):128–143PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fluhr R (2009) Reactive oxygen-generating NADPH oxidases in plants. In: Reactive oxygen species in plant signaling. Springer, Berlin/Heidelberg, pp 1–23Google Scholar
  19. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446PubMedCrossRefPubMedCentralGoogle Scholar
  20. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364CrossRefGoogle Scholar
  21. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  22. Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112(1):327–336PubMedPubMedCentralCrossRefGoogle Scholar
  23. Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59(2):309–314PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gorham J (1995) Mechanism of salt tolerance of halophytes. Halophyt Biosal Agric 31Google Scholar
  25. Gossett DR, Millhollon EP, Lucas M (1994) Antioxidant response to NaCl stress in salt-tolerant and saltsensitive cultivars of cotton. Crop Sci 34(3):706–714CrossRefGoogle Scholar
  26. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499CrossRefGoogle Scholar
  27. Hernandez JA, Jimenez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23(8):853–862CrossRefGoogle Scholar
  28. Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61(2):521–535CrossRefGoogle Scholar
  29. Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56(422):3041–3049PubMedCrossRefPubMedCentralGoogle Scholar
  30. Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Shi H (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135(3):1718–1737PubMedPubMedCentralCrossRefGoogle Scholar
  31. James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403CrossRefGoogle Scholar
  32. Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kang KS, Lim CJ, Han TJ, Kim JC, Jin CD (1999) Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves ofarabidopsis thaliana. J Plant Biol 42(3):187–193CrossRefGoogle Scholar
  34. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29(7):1220–1234PubMedCrossRefGoogle Scholar
  35. Kartashov AV, Radyukina NL, Ivanov YV, Pashkovskii PP, Shevyakova NI, Kuznetsov VV (2008) Role of antioxidant systems in wild plant adaptation to salt stress. Russ J Plant Physiol 55(4):463CrossRefGoogle Scholar
  36. Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86(1):180–187CrossRefGoogle Scholar
  37. Krause GH, Foyer CH, Mullineaux PM (1994) The role of oxygen in photoinhibition of photosynthesis. In: Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 43–76Google Scholar
  38. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25(7):873–882CrossRefGoogle Scholar
  39. Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53(1):96–106PubMedCrossRefGoogle Scholar
  40. Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012) Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. S Afr J Bot 78:235–245CrossRefGoogle Scholar
  41. Lu C, Qiu N, Wang B, Zhang J (2003) Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot 54(383):851–860PubMedCrossRefGoogle Scholar
  42. M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Lachaâl M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163(10):1022–1031PubMedCrossRefPubMedCentralGoogle Scholar
  43. Maathuis FJM, Flowers TJ, Yeo AR (1992) Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L.) Dum. and its relation to tonoplast permeability. J Exp Bot 43(9):1219–1223CrossRefGoogle Scholar
  44. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San DiegoGoogle Scholar
  45. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76CrossRefGoogle Scholar
  46. Meneguzzo S, Navam-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCI concentrations. J Plant Physiol 155(2):274–280CrossRefGoogle Scholar
  47. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):1–r10CrossRefGoogle Scholar
  48. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Biol 52(1):561–591CrossRefGoogle Scholar
  49. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663CrossRefGoogle Scholar
  50. Munns R, Passioura JB (1984) Hydraulic resistance of plants. III. Effects of NaCl in barley and lupin. Funct Plant Biol 11(5):351–359CrossRefGoogle Scholar
  51. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedPubMedCentralCrossRefGoogle Scholar
  52. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279CrossRefGoogle Scholar
  53. Nor’aini MF, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J Exp Bot 48(2):325–331CrossRefGoogle Scholar
  54. Nublat A, Desplans J, Casse F, Berthomieu P (2001) sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell 13(1):125–137PubMedPubMedCentralCrossRefGoogle Scholar
  55. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24(7):1311–1317PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ozturk L, Demir Y (2002) In vivo and in vitro protective role of proline. Plant Growth Regul 38(3):259–264CrossRefGoogle Scholar
  57. Pang CH, Zhang SJ, Gong ZZ, Wang BS (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plant 125(4):490–499CrossRefGoogle Scholar
  58. Pardo JM, Quintero FJ (2002) Plants and sodium ions: keeping company with the enemy. Genome Biol 3(6):1CrossRefGoogle Scholar
  59. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6(4):379–389PubMedCrossRefPubMedCentralGoogle Scholar
  60. Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20Google Scholar
  61. Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1) deficient Arabidopsis plants. Plant J 34(2):187–203PubMedCrossRefPubMedCentralGoogle Scholar
  62. Qiu-Fang Z, Yuan-Yuan L, Cai-Hong P, Cong-Ming L, Bao-Shan W (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168(2):423–430CrossRefGoogle Scholar
  63. Radyukina NL, Ivanov YV, Kartashov AV, Shevyakova NI, Rakitin VY, Khryanin VN, Kuznetsov VV (2007) Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L. Russ J Plant Physiol 54(5):612–618CrossRefGoogle Scholar
  64. Rejeb KB, Benzarti M, Debez A, Bailly C, Savoure A, Abdelly C (2015) NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. J Plant Physiol 174:5–15PubMedCrossRefPubMedCentralGoogle Scholar
  65. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130(3):1143–1151PubMedPubMedCentralCrossRefGoogle Scholar
  66. Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P (1996) Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta 198(1):64–69PubMedCrossRefPubMedCentralGoogle Scholar
  67. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211PubMedCrossRefPubMedCentralGoogle Scholar
  68. Shannon MC, Grieve CM, Francois LE (1994) Whole-plant response to salinity. In: Plant-environment interactions. Dekker, New York, pp 199–244Google Scholar
  69. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21(1):81–85PubMedCrossRefPubMedCentralGoogle Scholar
  70. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131CrossRefGoogle Scholar
  71. Smirnoff N (1996) Botanical briefing: the function and metabolism of ascorbic acid in plants. Ann Bot 78(6):661–669CrossRefGoogle Scholar
  72. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35(4):291–314PubMedCrossRefPubMedCentralGoogle Scholar
  73. Soundararajan P, Manivannan A, Jeong BR (2016) Signaling patterns of reactive oxygen species and phytohormones during transition period of quiescent seeds into metabolically active organisms. In: New challenges in seed biology-basic and translational research driving seed technology. InTech, Croatia, pp 75–95Google Scholar
  74. Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97(3):990–997PubMedPubMedCentralCrossRefGoogle Scholar
  75. Stallaert VM, Ducruet JM, Tavernier E, Blein JP (1995) Lipid peroxidation in tobacco leaves treated with the elicitor cryptogein: evaluation by high-temperature thermoluminescence emission and chlorophyll fluorescence. Biochim Biophys Acta Bioenerg 1229(2):290–295CrossRefGoogle Scholar
  76. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci 99(1):517–522PubMedCrossRefGoogle Scholar
  77. Vengosh A (2003) Salinization and saline environments. Treat Geochem 9:333–365Google Scholar
  78. Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145(2):559–571PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167(4):671–677CrossRefGoogle Scholar
  80. Wiciarz M, Gubernator B, Kruk J, Niewiadomska E (2015) Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiol Plant 153(3):467–476PubMedCrossRefGoogle Scholar
  81. Xing Y, Jia W, Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot 58(11):2969–2981PubMedCrossRefGoogle Scholar
  82. Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52(4):689–698PubMedCrossRefGoogle Scholar
  83. Zarrouk M, El Almi H, Youssef NB, Sleimi N, Smaoui A, Miled DB, Abdelly C (2003) Lipid composition of seeds of local halophytes: Cakile maritima, Zygophyllum album and Crithmum maritimum. In: Cash crop halophytes: recent studies. Springer, Dordrecht, pp 121–124CrossRefGoogle Scholar
  84. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135(2):615–621PubMedPubMedCentralCrossRefGoogle Scholar
  85. Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141(2):475–487PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M, Jiang M (2012) The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in Rice. J Integr Plant Biol 54(7):500–510PubMedCrossRefGoogle Scholar
  87. Zhao KF (1991) Desalination of saline soils by Suaeda salsa. Plant Soil 135:303–305CrossRefGoogle Scholar
  88. Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26(9):1521–1528PubMedCrossRefGoogle Scholar
  89. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445PubMedCrossRefPubMedCentralGoogle Scholar
  90. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167(3):527–533CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prabhakaran Soundararajan
    • 1
  • Abinaya Manivannan
    • 2
  • Byoung Ryong Jeong
    • 1
    • 2
    • 3
    Email author
  1. 1.Horticulture Major, Division of Applied Life Science (BK21 Plus), Graduate SchoolGyeongsang National UniversityJinjuSouth Korea
  2. 2.Institute of Agriculture and Life ScienceGyeongsang National UniversityJinjuSouth Korea
  3. 3.Research Institute of Life ScienceGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations