Evidence for the Role of Salinity and Alkalinity in Plant Diversification in Australia

  • Elisabeth N. BuiEmail author
Part of the Tasks for Vegetation Science book series (TAVS, volume 49)


Australia is the world’s driest inhabited continent and has some of the world’s most stable landscapes and some of the oldest flora, dating back to Gondwana. Two-third of the island continent experiences arid and semiarid climate. Under these climatic conditions where seasonal water deficits occur regularly, salts and carbonates accumulate in soils. Plant distributions have shifted and plants have evolved to adapt to these conditions. This paper summarizes the evidence for the role of soil salinity and alkalinity as drivers in plant diversification in Australia; there is good evidence that both have played an important role for grasses and acacias. Moreover adaptation to salinity may have facilitated the evolution of C4 photosynthesis in Neurachne, an Australian endemic clade of grasses.


Acacia Neurachne Plant diversification Soil salinity Alkalinity 


  1. Barlow BA (1981) The Australian flora: its origin and evolution. In Flora of Australia vol. 1. pp 25–75. Griffin Press, Netley.Google Scholar
  2. Brown SL, Warwick NW, Prychid CJ (2013) Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)? Plant Physiol Biochem 73:219–228CrossRefGoogle Scholar
  3. Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25CrossRefGoogle Scholar
  4. Bui EN, Gonzalez-Orozco CE, Miller JT (2014a) Acacia, climate, and geochemistry in Australia. Plant Soil 381:161–175CrossRefGoogle Scholar
  5. Bui EN, Thornhill A, Miller JT (2014b) Salt-and alkaline-tolerance are linked in Acacia. Biol Lett 10(7):20140278CrossRefGoogle Scholar
  6. Christin PA, Wallace MJ, Clayton H et al (2012) Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. J Exp Bot 63(17):6297–6308CrossRefGoogle Scholar
  7. Coleman PSJ, Cook FS (2009) Habitat preferences of the Australian endangered samphire Tecticornia flabelliformis. Trans R Soc S Aust 133(2):300–306. CrossRefGoogle Scholar
  8. DEWR (2007) Australia’s native vegetation: a summary of Australia’s major vegetation groups. Australian Government, Canberra.Google Scholar
  9. Ellison JC, Simmonds S (2003) Structure and productivity of inland mangrove stands at Lake MacLeod, Western Australia. J R Soc West Aust 86:21–26Google Scholar
  10. He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends in Plant Science 19(3):166–174CrossRefGoogle Scholar
  11. Joseph S, Bhave M, Miller JT, Murphy DJ (2013) Rapid identification of Acacia species with potential salt tolerance by using nuclear ribosomal DNA markers. Sustain Agric Res 2(4):77CrossRefGoogle Scholar
  12. Joseph S, Murphy DJ, Bhave M (2015) Identification of salt tolerant Acacia species for saline land utilisation. Biologia 70(2):174–182CrossRefGoogle Scholar
  13. Kadereit G, Ackerly D, Pirie MD (2012) A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae ss). Proc R Soc B 279(1741):3304–3311. CrossRefPubMedGoogle Scholar
  14. Knorr G, Butzin M, Micheels A, Lohmann G (2011) A warm Miocene climate at low atmospheric CO2 levels. Geophys Res Lett 38:L20701. CrossRefGoogle Scholar
  15. Lambers H, Shane MW, Laliberté E et al (2014) Plant mineral nutrition. In: Plant life on the sandplains in Southwest Australia, a global biodiversity hotspot. UWA Publishing, Crawley, Crawley, pp 101–127Google Scholar
  16. Martin HA (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Environ 66:533–563CrossRefGoogle Scholar
  17. Mernagh TP (ed) (2013) A review of Australian salt lakes and assessment of their potential for strategic resources. Record 2013/39. Geoscience Australia, CanberraGoogle Scholar
  18. Mernagh TP, Bastrakov EN, Jaireth S et al (2016) A review of Australian salt lakes and associated mineral systems. Aust J Earth Sci 63(2):1–27CrossRefGoogle Scholar
  19. Miller JT, Murphy DJ, Ho SY, Cantrill DJ, Seigler D (2013) Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust J Bot 61(6):436–445CrossRefGoogle Scholar
  20. Monson RK (2003) Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54CrossRefGoogle Scholar
  21. Morton SR, Smith DS, Dickman CR et al (2011) A fresh framework for the ecology of arid Australia. J Arid Environ 75(4):313–329CrossRefGoogle Scholar
  22. Nicolle D (2005) A rare and endangered new subspecies of Eucalyptus sargentii (Myrtaceae) with high potential for revegetation of saline sites from South-Western Australia and notes on E. diminuta and E. sargentii subsp. fallens. Nuytsia 15:395–402Google Scholar
  23. Nicolle D (2008) Systematic studies of the mallees, Eucalyptus series Subulatae (Myrtaceae). Dissertation, Flinders University of South Australia.Google Scholar
  24. Nicolle D, Brooker MIH (2005) Reassessment of the saline-dwelling Eucalyptus spathulata complex (Myrtaceae) from southern Western Australia. Nuytsia 15:403–429Google Scholar
  25. Prendergast HDV, Hattersley PW (1985) Distribution and cytology of Australian Neurachne and its allies (Poaceae), a group containing C3, C4 and C3-C4 intermediate species. Aust J Bot 33(3):317–336CrossRefGoogle Scholar
  26. Reid N, Robson TC, Radcliffe B, Verrall M (2016) Excessive sulphur accumulation and ionic storage behaviour identified in species of Acacia (Leguminosae: Mimosoideae). Ann Bot 117(4):653–666CrossRefGoogle Scholar
  27. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023CrossRefGoogle Scholar
  28. Richards LA (ed) (1954) Diagnosis and improvement of saline and alkali soils, USDA handbook 60. USDA, Washington, DCGoogle Scholar
  29. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47CrossRefGoogle Scholar
  30. Sander J, Wardell-Johnson G (2011) Impacts of soil fertility on species and phylogenetic turnover in the high-rainfall zone of the Southwest Australian global biodiversity hotspot. Plant Soil 345:103–124CrossRefGoogle Scholar
  31. Saslis-Lagoudakis CH, Hua X, Bui E et al (2015) Predicting species’ tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses. Ann Bot 115(3):343–351CrossRefGoogle Scholar
  32. Steffen S, Ball P, Mucina L, Kadereit G (2015) Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae). Ann Bot 115(3):353–368CrossRefGoogle Scholar
  33. Voznesenskaya EV, Akhani H, Koteyeva NK et al (2008) Structural, biochemical, and physiological characterization of photosynthesis in two C4 subspecies of Tecticornia indica and the C3 species Tecticornia pergranulata (Chenopodiaceae). J Exp Bot 59(7):1715–1734CrossRefGoogle Scholar
  34. Wang X, Gowik U, Tang H et al (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68CrossRefGoogle Scholar
  35. Warren JK (2016) Evaporites: a geological compendium. Springer, ChamGoogle Scholar
  36. Wilford J, de Caritat P, Bui E (2015) Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma 259–260:81–92. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSIRO Land & Water, Black MountainCanberraAustralia

Personalised recommendations