Advertisement

Visualizing the Template of a Chaotic Attractor

  • Maya Olszewski
  • Jeff Meder
  • Emmanuel Kieffer
  • Raphaël Bleuse
  • Martin Rosalie
  • Grégoire DanoyEmail author
  • Pascal Bouvry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

Chaotic attractors are solutions of deterministic processes, of which the topology can be described by templates. We consider templates of chaotic attractors bounded by a genus–1 torus described by a linking matrix. This article introduces a novel and unique tool to validate a linking matrix, to optimize the compactness of the corresponding template and to draw this template. The article provides a detailed description of the different validation steps and the extraction of an order of crossings from the linking matrix leading to a template of minimal height. Finally, the drawing process of the template corresponding to the matrix is saved in a Scalable Vector Graphics (SVG) file.

Keywords

Chaotic attractor Template Linking matrix Optimization Visualization 

Notes

Acknowledgments

The experiments presented in this paper were carried out using the HPC facilities of the University of Luxembourg [29] (see https://hpc.uni.lu). This work is partially funded by the joint research programme UL/SnT-ILNAS on Digital Trust for Smart ICT.

References

  1. 1.
    Anastassiou, S., Bountis, T., Petalas, Y.G.: On the topology of the Lü attractor and related systems. J. Phys. A: Math. Theor. 41(48), 485101 (2008).  https://doi.org/10.1088/1751-8113/41/48/485101MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the rössler equations: bifurcations of limit cycles and chaotic attractors. Phys. D: Nonlinear Phenom. 238(13), 1087–1100 (2009).  https://doi.org/10.1016/j.physd.2009.03.010CrossRefzbMATHGoogle Scholar
  3. 3.
    Barrio, R., Blesa, F., Serrano, S.: Topological changes in periodicity hubs of dissipative systems. Phys. Rev. Lett. 108(21), 214102 (2012).  https://doi.org/10.1103/physrevlett.108.214102CrossRefGoogle Scholar
  4. 4.
    Barrio, R., Dena, A., Tucker, W.: A database of rigorous and high-precision periodic orbits of the Lorenz model. Comput. Phys. Commun. 194, 76–83 (2015).  https://doi.org/10.1016/j.cpc.2015.04.007CrossRefzbMATHGoogle Scholar
  5. 5.
    Benincà, E., Ballantine, B., Ellner, S.P., Huisman, J.: Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Nat. Acad. Sci. 112(20), 6389–6394 (2015).  https://doi.org/10.1073/pnas.1421968112CrossRefGoogle Scholar
  6. 6.
    Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I: Lorenz’s equation. Topology 22(1), 47–82 (1983).  https://doi.org/10.1016/0040-9383(83)90045-9MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boulant, G., Lefranc, M., Bielawski, S., Derozier, D.: A nonhorseshoe template in a chaotic laser model. Int. J. Bifurcat. Chaos 08(05), 965–975 (1998).  https://doi.org/10.1142/s0218127498000772CrossRefGoogle Scholar
  8. 8.
    Budroni, M.A., Calabrese, I., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.: Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19(48), 32235–32241 (2017).  https://doi.org/10.1039/c7cp06601eCrossRefGoogle Scholar
  9. 9.
    Cross, D.J., Gilmore, R.: Dressed return maps distinguish chaotic mechanisms. Phys. Rev. E 87(1), 012919 (2013).  https://doi.org/10.1103/physreve.87.012919CrossRefGoogle Scholar
  10. 10.
    Ghrist, R.W., Holmes, P.J., Sullivan, M.C.: Knots and Links in Three-Dimensional Flows. Springer, Berlin (1997).  https://doi.org/10.1007/bfb0093387CrossRefzbMATHGoogle Scholar
  11. 11.
    Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70(4), 1455–1529 (1998).  https://doi.org/10.1103/revmodphys.70.1455MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gilmore, R., Rosalie, M.: Algorithms for concatenating templates. Chaos: Interdisc J. Nonlinear Sci. 26(3), 033102 (2016).  https://doi.org/10.1063/1.4942799MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale NbO\(_2\) Mott memristors for analogue computing. Nature 548(7667), 318–321 (2017).  https://doi.org/10.1038/nature23307CrossRefGoogle Scholar
  14. 14.
    Larger, L., Penkovsky, B., Maistrenko, Y.: Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun. 6(1), 7752 (2015).  https://doi.org/10.1038/ncomms8752CrossRefGoogle Scholar
  15. 15.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963).  https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2CrossRefGoogle Scholar
  16. 16.
    Malasoma, J.M.: What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264(5), 383–389 (2000).  https://doi.org/10.1016/s0375-9601(99)00819-1MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Melvin, P., Tufillaro, N.B.: Templates and framed braids. Phys. Rev. A 44, R3419–R3422 (1991).  https://doi.org/10.1103/PhysRevA.44.R3419MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mindlin, G.B., Hou, X.J., Solari, H.G., Gilmore, R., Tufillaro, N.B.: Classification of strange attractors by integers. Phys. Rev. Lett. 64(20), 2350–2353 (1990).  https://doi.org/10.1103/physrevlett.64.2350MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moitzi, M.: svgwrite (Python Library) (2018). https://pypi.org/project/svgwrite/. Accessed 26 May 2018
  20. 20.
    Olszewski, M., et al.: Visualizing the template of a chaotic attractor. arXiv preprint arXiv:1807.11853 (2018)
  21. 21.
    Rosalie, M.: Templates and subtemplates of Rössler attractors from a bifurcation diagram. J. Phys. A: Math. Theor. 49(31), 315101 (2016).  https://doi.org/10.1088/1751-8113/49/31/315101MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rosalie, M.: Chaotic mechanism description by an elementary mixer for the template of an attractor. arXiv preprint arXiv:1703.02768 (2017)
  23. 23.
    Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P.: Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm Evol. Comput. 41, 36–48 (2018).  https://doi.org/10.1016/j.swevo.2018.01.002CrossRefGoogle Scholar
  24. 24.
    Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: I. genus-one attractors with an inversion symmetry. J. Phys. A: Math. Theor. 46(37), 375101 (2013).  https://doi.org/10.1088/1751-8113/46/37/375101MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: II. genus-one attractors with multiple unimodal folding mechanisms. J. Phys. A: Math. Theor. 48(23), 235101 (2015).  https://doi.org/10.1088/1751-8113/48/23/235101MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976).  https://doi.org/10.1016/0375-9601(76)90101-8CrossRefzbMATHGoogle Scholar
  27. 27.
    Suzuki, Y., Lu, M., Ben-Jacob, E., Onuchic, J.N.: Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 6(1), 21037 (2016).  https://doi.org/10.1038/srep21037CrossRefGoogle Scholar
  28. 28.
    Tufillaro, N.B., Abbott, T., Reilly, J.: An Experimental Approach to Nonlinear Dynamics and Chaos. Addison-Wesley, Redwood City (1992)zbMATHGoogle Scholar
  29. 29.
    Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic HPC cluster: the UL experience. In: 2014 International Conference on High Performance Computing & Simulation (HPCS). IEEE (2014).  https://doi.org/10.1109/hpcsim.2014.6903792

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FSTC/CSC-ILIAS, University of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.SnT, University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations