Advertisement

Short Plane Supports for Spatial Hypergraphs

  • Thom Castermans
  • Mereke van Garderen
  • Wouter MeulemansEmail author
  • Martin Nöllenburg
  • Xiaoru Yuan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11282)

Abstract

A graph \(G=(V,E)\) is a support of a hypergraph \(H=(V,S)\) if every hyperedge induces a connected subgraph in G. Supports are used for certain types of hypergraph visualizations. In this paper we consider visualizing spatial hypergraphs, where each vertex has a fixed location in the plane. This is the case, e.g., when modeling set systems of geospatial locations as hypergraphs. By applying established aesthetic quality criteria we are interested in finding supports that yield plane straight-line drawings with minimum total edge length on the input point set V. We first show, from a theoretical point of view, that the problem is NP-hard already under rather mild conditions as well as a negative approximability results. Therefore, the main focus of the paper lies on practical heuristic algorithms as well as an exact, ILP-based approach for computing short plane supports. We report results from computational experiments that investigate the effect of requiring planarity and acyclicity on the resulting support length. Further, we evaluate the performance and trade-offs between solution quality and speed of several heuristics relative to each other and compared to optimal solutions.

Notes

Acknowledgments

This work started at Dagstuhl seminar 17332 “Scalable Set Visualizations”. The authors would like to thank Nathalie Henry Riche for providing the data for Fig. 2. TC was supported by the Netherlands Organisation for Scientific Research (NWO, 314.99.117). MvG received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under ERC grant agreement n\(^{\text {o}}\) 319209 (project NEXUS 1492) and the German Research Foundation (DFG) within project B02 of SFB/Transregio 161. WM was partially supported by the Netherlands eScience Centre (NLeSC, 027.015.G02).

References

  1. 1.
    Akitaya, H.A., Löffler, M., Tóth, C.D.: Multi-colored spanning graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 81–93. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_7CrossRefGoogle Scholar
  2. 2.
    Alper, B., Henry Riche, N., Ramos, G., Czerwinski, M.: Design study of LineSets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267 (2011).  https://doi.org/10.1109/TVCG.2011.186CrossRefGoogle Scholar
  3. 3.
    Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: The state of the art of set visualization. Comput. Graph. Forum 35(1), 234–260 (2016).  https://doi.org/10.1111/cgf.12722CrossRefGoogle Scholar
  4. 4.
    Bereg, S., Fleszar, K., Kindermann, P., Pupyrev, S., Spoerhase, J., Wolff, A.: Colored non-crossing euclidean steiner forest. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 429–441. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48971-0_37CrossRefGoogle Scholar
  5. 5.
    Bereg, S., Jiang, M., Yang, B., Zhu, B.: On the red/blue spanning tree problem. Theor. Comput. Sci. 412(23), 2459–2467 (2011).  https://doi.org/10.1016/j.tcs.2010.10.038MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs. J. Discrete Algorithms 14, 248–261 (2012).  https://doi.org/10.1016/j.jda.2011.12.009MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011).  https://doi.org/10.7155/jgaa.00237MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Castermans, T., van Garderen, M., Meulemans, W., Nöllenburg, M., Yuan, X.: Short plane supports for spatial hypergraphs. Computing Research Repository, arXiv:1808.09729 (2018)
  9. 9.
    Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6), 1009–1016 (2009).  https://doi.org/10.1109/TVCG.2009.122CrossRefGoogle Scholar
  10. 10.
    Dinkla, K., van Kreveld, M., Speckmann, B., Westenberg, M.: Kelp diagrams: point set membership visualization. Comput. Graph. Forum 31(3pt1), 875–884 (2012).  https://doi.org/10.1111/j.1467-8659.2012.03080.xCrossRefGoogle Scholar
  11. 11.
    Efrat, A., Hu, Y., Kobourov, S.G., Pupyrev, S.: MapSets: visualizing embedded and clustered graphs. J. Graph Algorithms Appl. 19(2), 571–593 (2015).  https://doi.org/10.7155/jgaa.00364MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    van Goethem, A., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sondag, M., Wulms, J.: The painter’s problem: covering a grid with colored connected polygons. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 492–505. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73915-1_38CrossRefGoogle Scholar
  13. 13.
    Hurtado, F., et al.: Colored spanning graphs for set visualization. Comput. Geom.: Theory Appl. 68, 262–276 (2018).  https://doi.org/10.1016/j.comgeo.2017.06.006MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987).  https://doi.org/10.1002/jgt.3190110306MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hypergraphs and low-concurrency euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08404-6_23CrossRefGoogle Scholar
  16. 16.
    Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1–3), 385–414 (2003).  https://doi.org/10.1007/s10107-003-0410-xMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982).  https://doi.org/10.1137/0211025MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Meulemans, W., Henry Riche, N., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11), 1846–1858 (2013).  https://doi.org/10.1109/TVCG.2013.76CrossRefGoogle Scholar
  19. 19.
    Purchase, H.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002).  https://doi.org/10.1006/jvlc.2002.0232CrossRefGoogle Scholar
  20. 20.
    Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU EindhovenEindhovenThe Netherlands
  2. 2.Universität KonstanzKonstanzGermany
  3. 3.TU WienViennaAustria
  4. 4.Peking UniversityBeijingChina

Personalised recommendations