Salvadora persica L.: A Medicinal Plant with Multifaceted Role in Maintaining Oral Hygiene

  • Waseem Mohammed Abdul
  • Kaleemuddin Mohammed
  • Furkhan Ahmed Mohammed
  • Syed Shoeb Razvi
  • Babajan Banaganapalli
  • Noor Ahmad Shaik
  • Khalid Rehman Hakeem


Negligence of oral hygiene is one of the chief causes of oral complications affecting human health worldwide, regardless of demographics, consequently contributing to the increasing global death rate. Inadequate oral hygiene is linked with numerous diseases and oral cavity is the gateway to many pathogens, which may lead to death by inviting life-threatening ailments such as antimicrobial drug resistance and cancer. About 70% of oral cancers are preceded by the onset of precancerous oral lesions. According to WHO, oral diseases occupy fourth position in terms of treatment expense, which subsequently adds the burden on the developing countries by investing resources for the upliftment of healthcare systems in maintaining oral hygiene. There is an urgent need to find out a solution to prevent the oral diseases, which is accessible and equally affordable by each individual. Salvadora persica is a traditional herb, which gained importance in the modern medicine, due to its documented oral treatment, since time immemorial, and contemporary research evidences proving its therapeutic potential. S. persica has varied pharmacological properties such as antimicrobial, reducing dental plaque, and anti-inflammatory, anti-carcinogenic, and anticancer activities. S. persica has vital phytochemicals such as saponins, tannins, flavonoids, terpenoids, and the most prominent benzyl isothiocyanate. In this communication, we have discussed the role of S. persica in maintaining the oral health and its medicinal efficacy towards treatment of various ailments.


Salvadora persica Miswak Benzyl isothiocyanate Oral hygiene Oral pathogens Oral cancer 


  1. Abdul H, Balto G, Halawany HS, Biju N, Jacob V (2015) The efficacy of Salvadora persica extracts in preserving the viability of human foreskin fibroblasts. Saudi Dent J 27:137–140CrossRefGoogle Scholar
  2. Abdulbaqi HR, Himratul-aznita WH, Baharuddin NA (2016) Evaluation of Salvadora persica L. and green tea anti-plaque effect: a randomized controlled crossover clinical trial. BMC Complement Altern Med 16:1–7CrossRefGoogle Scholar
  3. Ahmad H, Rajagopal K (2014) Salvadora persica L. (Meswak) in dental hygiene. Saudi J Dent Res 5:130–134CrossRefGoogle Scholar
  4. Akhtar J, Siddique KM, Bi S, Mujeeb M (2011) A review on phytochemical and pharmacological investigations of miswak (Salvadora persica Linn). J Pharm Bioallied Sci 3:113–117PubMedPubMedCentralCrossRefGoogle Scholar
  5. Al-Ayed MSZ, Asaad AM, Qureshi MA, Attia HG, AlMarrani AH (2016) Antibacterial activity of Salvadora persica L. (Miswak) extracts against multidrug resistant bacterial clinical isolates. Evid Based Complement Alternat Med 2016:7083964PubMedPubMedCentralCrossRefGoogle Scholar
  6. Al-Sieni AII (2014) The antibacterial activity of traditionally used Salvadora persica L. (Miswak) and Commiphora gileadensis (Palsam) in Saudi Arabia. Afr J Tradit Complement Altern Med 11:23–27PubMedGoogle Scholar
  7. Antony ML, Kim S, Singh SV (2012) Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death. PLoS One 7:e32267PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arroyo R, Suñé G, Zanzoni A, Duran-Frigola M, Alcalde V, Stracker TH, Soler-López M, Aloy P (2015) Systematic identification of molecular links between core and candidate genes in breast cancer. J Mol Biol 427:1436–1450PubMedCrossRefGoogle Scholar
  9. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33(8):1582–1614PubMedPubMedCentralCrossRefGoogle Scholar
  10. Almas K, Al-Bagieh NH (1999) The antimicrobial effects of bark and pulp extracts of Miswak, Salvadora persica. Biomed Lett 60:71–75Google Scholar
  11. Boreddy SR, Sahu RP, Srivastava SK (2011) Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS One 6:e25799PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bos G (1993) The miswãk, an aspect of dental care in Islam. Med Hist 37:68–79PubMedPubMedCentralCrossRefGoogle Scholar
  13. Coopman V, De Leeuw M, Cordonnier J, Jacobs W (2009) Suicidal death after injection of a castor bean extract (Ricinus communis L.). Forensic Sci Int 189:e13–e20PubMedCrossRefGoogle Scholar
  14. Coelho KR (2012) Challenges of the oral cancer burden in India. J Cancer Epidemiol 2012:1–17CrossRefGoogle Scholar
  15. Dabholkar CS, Shah M, Kathariya R, Bajaj M, Doshi Y (2016) Comparative evaluation of antimicrobial activity of pomegranate-containing mouthwash against oral-biofilm forming organisms: an invitro microbial study. J Clin Diagn Res 10:ZC65–ZC69PubMedPubMedCentralGoogle Scholar
  16. Damaskinos P, Koletsi-Kounari H, Economou C, Eaton KA, Widström E (2016) The healthcare system and provision of oral healthcare in European Union member states. Part 4: Greece. Br Dent J 220(5):253–260PubMedCrossRefGoogle Scholar
  17. El-Desoukey RMA (2015) Comparative microbiological study between the Miswak (Salvadora persica) and the toothpaste. Int J Microbiol Res 6:47–53Google Scholar
  18. Ezoddini-Ardakani F (2010) Efficacy of Miswak (Salvadora persica) in preventing dental caries. Health 2:499–503CrossRefGoogle Scholar
  19. Ghahroudi R, Alireza A, Afsaneh R, Salehifard M, Hosein S, Siamak Y, Afshin K, Zeinab K, Mahvash MJ (2014) Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: an in-vitro study. J Oral Biol Craniofacial Res 4:19–23CrossRefGoogle Scholar
  20. Halawany HS (2012) A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent J 24:63–69PubMedPubMedCentralCrossRefGoogle Scholar
  21. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724PubMedCrossRefGoogle Scholar
  22. Hammad H, Al-Qaoud K, Hammad M, Mansi M (2014) Effects of salvadora persica extract on DOK oral epithelial dysplasia and PE/CA-PJ15 oral cancer cell lines. Oral Surg Oral Med Oral Pathol Oral Radiol 118(6):e195–e196CrossRefGoogle Scholar
  23. Habtemariam S (2017) Going Back to the Good Old Days: The Merit of Crude Plant Drug Mixtures in the 21st Century. Int J Complement Altern Med 6(2):00182CrossRefGoogle Scholar
  24. Ibrahim MM, Al Sahli AA, Alaraidh IA, Al-Homaidan AA, Mostafa EM, El-Gaaly GA (2015) Assessment of antioxidant activities in roots of miswak (Salvadora persica) plants grown at two different locations in Saudi Arabia. Saudi J Biol Sci 22:168–175PubMedCrossRefGoogle Scholar
  25. Jaikumar B, Jasmine R (2016) A review on a few medicinal plants possessing anticancer activity against human breast cancer. Int J PharmTech Res 9:333–365Google Scholar
  26. Jin L, Lamster I, Greenspan J, Pitts N, Scully C, Warnakulasuriya S (2016) Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis 22(7):609–619PubMedCrossRefGoogle Scholar
  27. Khalessi AM, Pack ARC, Thomson WM, Tompkins GR (2004) An in vivo study of the plaque control efficacy of Persica™: a commercially available herbal mouthwash containing extracts of Salvadora persica. Int Dent J 54:279–283PubMedCrossRefGoogle Scholar
  28. Khan M, Ali M, Ali A, Mir SR (2014) Hypoglycemic and hypolipidemic activities of Arabic and Indian origin Salvadora persica root extract on diabetic rats with histopathology of their pancreas. Int J Health Sci (Qassim) 8:45–56CrossRefGoogle Scholar
  29. Kumar S, Navneet, Gautam SS, Kumar V (2016) Preliminary phytochemical screening and antimicrobial activity of Salvadora persica Linn extracts against oral pathogens. Fung Genomics Biol 6:1–4Google Scholar
  30. Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B (2018) Oral biofilms from symbiotic to pathogenic interactions and associated disease -connection of periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 9(53):1–14Google Scholar
  31. Karygianni L, Al-Ahmad A, Argyropoulou A, Hellwig E, Anderson AC, Skaltsounis AL (2016) Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front Microbiol 6:1529PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Microbiol 8:471–480PubMedCrossRefGoogle Scholar
  33. Karygianni L, Ruf S, Follo M, Hellwig E, Bucher M, Anderson AC, Vach K, Al-Ahmad A (2014) Novel Broad-Spectrum Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light plus Water-Filtered Infrared A. Appl Environ Microbiol 80(23):7324–7336PubMedPubMedCentralCrossRefGoogle Scholar
  34. Khatak M, Khatak S, Siddqui AA, Vasudeva N, Aggarwal A, Aggarwal P (2010) Salvadora persica. Pharmacogn Rev 4:209–214PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lai K-C, Huang A-C, Hsu S-C, Kuo C-L, Yang J-S, Wu S-H, Chung J-G (2010) Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem 58:2935–2942PubMedCrossRefGoogle Scholar
  36. Lee JH, Sun YN, Kim YH, Lee SK, Kim HP (2016) Inhibition of lung inflammation by Acanthopanax divaricatus var. Albeofructus and its constituents. Biomol Ther (Seoul) 24:67–74CrossRefGoogle Scholar
  37. Matasyoh LG, Matasyoh JC, Wachira FN, Kinyua MG, Thairu Muigai AW, Mukiama TK (2008) Antimicrobial activity of essential oils of Ocimum gratissimum L. from different populations of Kenya. Afr J Tradit Complement Altern Med 5:187–193PubMedPubMedCentralGoogle Scholar
  38. Miyamoto T, Okimoto T, Kuwano M (2014) Chemical composition of the essential oil of mastic gum and their antibacterial activity against drug-resistant Helicobacter pylori. Nat Prod Bioprospect 4:227–231PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mohamed SA, Khan JA (2013) Antioxidant capacity of chewing stick miswak Salvadora persica. BMC Complement Altern Med 13:1CrossRefGoogle Scholar
  40. Noumi E, Snoussi M, Trabelsi N, Hajlaoui H, Ksouri R (2011) Antibacterial, anticandidal and antioxidant activities of Salvadora persica and Juglans regia L. extracts. J Med Plant Res 5:4138–4146Google Scholar
  41. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0.
  42. Patel PV, Shruthi S, Kumar S (2012) Clinical effect of miswak as an adjunct to tooth brushing on gingivitis. J Indian Soc Periodontol 16:84–88PubMedPubMedCentralCrossRefGoogle Scholar
  43. Palombo EA (2011) Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. J Evid Based Complement Altern Med 2011:1–15CrossRefGoogle Scholar
  44. Patil R, Shailesh M. Gondivkar, Amol R. Gadbail, Monal Yuwanati, Mugdha Mankar (Gadbail), Manoj Likhitkar, Sachin Sarode, Gargi Sarode, Shankargouda Patil (2017) “Role of oral foci in systemic diseases: An update,” Int J Contemp Dent Med Rev 2017:1-8Google Scholar
  45. Richards D (2013) Oral diseases affect some 3.9 billion people. Evid Based Dent 14:35PubMedCrossRefGoogle Scholar
  46. Sardari F, Kazemi Arababadi M, Heiranizade M, Mosadeghi M (2015) Anti-inflammatory and cytotoxicity effects of Salvadora persica (meswak) extracts on Jurkat t-cells. J Microbiol Biotechnol Food Sci 4:379–382CrossRefGoogle Scholar
  47. Sheweita SA, El-Hosseiny LS, Nashashibi MA (2016) Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice. PLoS One 11:e0165667PubMedPubMedCentralCrossRefGoogle Scholar
  48. Siddeeqh S, Parida A, Jose M, Pai V (2016) Estimation of antimicrobial properties of aqueous and alcoholic extracts of Salvadora persica (Miswak) on oral microbial pathogens—an in vitro study. J Clin Diagn Res 10:13–16Google Scholar
  49. Silva AC, Lopes PM, Azevedo MM, Costa DC, Alviano CS, Alviano DS (2012) Biological activities of a-pinene and β-pinene enantiomers. Molecules 17(12):6305–6316PubMedCrossRefGoogle Scholar
  50. Sinha D, Sinha A (2014) Natural medicaments in dentistry. AYU (Int Q J Res Ayurveda) 35:113CrossRefGoogle Scholar
  51. Spanò V, Attanzio A, Cascioferro S, Carbone A, Montalbano A, Barraja P, Tesoriere L, Cirrincione G, Diana P, Parrino B (2016) Synthesis and antitumor activity of new thiazole nortopsentin analogs. Mar Drugs 14:226PubMedCentralCrossRefGoogle Scholar
  52. Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709PubMedCrossRefGoogle Scholar
  53. Taha E, Mariod A, Abouelhawa S, El-Geddawy M, Sorour M, Matthäus B (2010) Antioxidant activity of extracts from six different Sudanese plant materials. Eur J Lipid Sci Technol 112:1263–1269CrossRefGoogle Scholar
  54. Wolf MA, Claudio PP (2014) Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin. Nutr Cancer 66:285–294PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wu C, Huang A, Yang J, Liao C, Lu H, Chou S, Ma C (2011) Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human OS. J Orthop Res 29:1199–1209PubMedCrossRefGoogle Scholar
  56. Xie B, Nagalingam A, Kuppusamy P, Munira N (2017) Benzyl isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes. Sci Rep 7:1–14CrossRefGoogle Scholar
  57. Xu J, Zhou X, Wang J, Li Z, Kong X, Qian J, Hu Y, Fang J-Y, Aramayo R, Sherman MB et al (2013) RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep 3:1526–1538PubMedCrossRefGoogle Scholar
  58. Yardimci G, Kutlubay Z, Engin B, Tuzun Y (2014) Precancerous lesions of oral mucosa. World J Clin Cases 2(12):866–872PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Waseem Mohammed Abdul
    • 1
  • Kaleemuddin Mohammed
    • 2
    • 3
  • Furkhan Ahmed Mohammed
    • 1
  • Syed Shoeb Razvi
    • 2
  • Babajan Banaganapalli
    • 3
    • 4
  • Noor Ahmad Shaik
    • 3
    • 4
  • Khalid Rehman Hakeem
    • 1
  1. 1.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (PACER-HD)King Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Genetic Medicine, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations