Advertisement

Atlas-Free Method of Periventricular Hemorrhage Detection from Preterm Infants’ T1 MR Images

  • Subhayan Mukherjee
  • Irene Cheng
  • Anup Basu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11010)

Abstract

Detection of hemorrhages in the periventricular white matter region of infant brains is crucial since if left untreated it causes neuro-developmental deficits in later life. However, noise and motion artefacts are introduced while scanning infant brains due to small brain size and movement during scanning. Furthermore, a vast majority of traditional brain lesion detection algorithms which require accurate segmentation of the white matter region often rely on brain atlases to guide the segmentation. However, reliable brain atlases are hard to obtain for preterm infant brains which undergo rapid structural changes. To address this gap in published literature, we propose a novel method for hemorrhage detection which does not require a brain atlas. Instead of attempting accurate segmentation, the proposed method detects the ventricles and then samples a region of white matter around the ventricles. Based on the normal distribution of intensities in this tissue sample, the outliers are designated as hemorrhages. Heuristics based on size and location of the detected outliers are used to eliminate false positives. Results on an expert-annotated dataset demonstrate the effectiveness of the proposed method.

Keywords

Periventricular hemorrhage Segmentation Magnetic resonance imaging Preterm infant Atlas-free 

References

  1. 1.
    Asao, C., Korogi, Y., Kondo, Y., Yasunaga, T., Takahashi, M.: Neonatal periventricular-intraventricular hemorrhage: subacute and chronic MR findings. Acta Radiol. 42(4), 370–375 (2001)Google Scholar
  2. 2.
    Ballabh, P.: Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr. Res. 67(1), 1–8 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Devi, C.N., Chandrasekharan, A., Sundararaman, V., Alex, Z.C.: Neonatal brainMRI segmentation: a review. Comput. Biol. Med. 64, 163–178 (2015)CrossRefGoogle Scholar
  4. 4.
    Farzan, A.: Heuristically improved bayesian segmentation of brain MR images. Sci. World J. 9(3), 5–8 (2014)Google Scholar
  5. 5.
    Iyer, K.K., et al.: Early detection of preterm intraventricular hemorrhage from clinical electroencephalography. Crit. Care Med. 43(10), 2219–2227 (2015)CrossRefGoogle Scholar
  6. 6.
    Jain, S., et al.: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage: Clin. 8, 367–375 (2015)CrossRefGoogle Scholar
  7. 7.
    Liu, H.T., Sheu, T.W.H., Chang, H.H.: Automatic segmentation of brain mr images using an adaptive balloon snake model with fuzzy classification. Med. Biol. Eng. Comput. 51(10), 1091–1104 (2013)CrossRefGoogle Scholar
  8. 8.
    Marba, S.T.M., Caldas, J.P.S., Vinagre, L.E.F., Pessoto, M.A.: Incidence of periventricular/intraventricular hemorrhage in very low birth weight infants: a 15-year cohort study. J. Pediatr. 87, 505–511 (2011)Google Scholar
  9. 9.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  10. 10.
    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88688-4_14CrossRefGoogle Scholar
  11. 11.
    Ortiz, A., Gorriz, J., Ramirez, J., Salas-Gonzalez, D.: Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering. Inf. Sci. 262, 117–136 (2014)CrossRefGoogle Scholar
  12. 12.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  13. 13.
    Ou, X., et al.: Impaired white matter development in extremely low-birth-weight infants with previous brain hemorrhage. Am. J. Neuroradiol. 35(10), 1983–1989 (2014)CrossRefGoogle Scholar
  14. 14.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)CrossRefGoogle Scholar
  16. 16.
    Simon, N.P.: Periventricular/intraventricular hemorrhage (PVH/IVH) in the premature infant. http://www.pediatrics.emory.edu/divisions/neonatology/dpc/pvhivh.html. Accessed 02 Apr 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada

Personalised recommendations