Quantum Mechanics II

  • Albrecht LindnerEmail author
  • Dieter Strauch
Part of the Undergraduate Lecture Notes in Physics book series (ULNP)


This chapter addresses those students who seek a more detailed knowledge of quantum-mechanical applications to systems of general interest. The first part presents various aspects of scattering theory: Green functions, the Lippmann–Schwinger equation, the Born approximation, Möller’s wave operator, scattering and transition operators, both two- and three-body scattering, the Gell-Mann–Goldberger formula, Feshbach’s theory of nuclear reactions, the Breit–Wigner formula, the Faddeev equations, and (un)connected Feynman graphs. The second part is devoted to many-particle systems of fermions, bosons, and photons, the Hartree–Fock equations, the BCS formalism, the Bogoliubov transformation, electric field quantization (rarely found elsewhere), Glauber states, and quenched states. Coupled photon–electron states (polaritons) and the excitation and de-excitation of atoms in a light field (Jaynes–Cummings model), are also rarely found elsewhere. In the third part, we treat the Dirac equation. Results are given in the Weyl representation, which is preferred here, but also in the standard representation. The particle–antiparticle versus particle–hole controversy is taken up, something still under dispute.


  1. 1.
    H. Feshbach, Ann. Phys. 19, 287 (1962)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947)ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P.I. Kapur, R. Peierls, Proc. Roy. Soc. A 166, 277 (1937)ADSGoogle Scholar
  5. 5.
    P.A. Kazaks, K.R. Greider, Phys. Rev. C 1, 856 (1970)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E.W. Schmid, H. Ziegelmann, The Quantum Mechanical Three-Body Problem (Vieweg, Braunschweig, 1974)Google Scholar
  7. 7.
    G.E. Brown, Many-Body Problems (North-Holland, Amsterdam, 1972), p. 22Google Scholar
  8. 8.
    C. Cohen Tannoudji, J. Dupont-Roc, G. Grynber, Photons and Atoms (Wiley, New York, 1989), Chap. 5Google Scholar
  9. 9.
    E. Schrödinger, Naturwissenschaften 14, 664 (1926)ADSCrossRefGoogle Scholar
  10. 10.
    O. Klein, Z. Phys. 37, 895 (1926)ADSCrossRefGoogle Scholar
  11. 11.
    W. Gordon, Z. Phys. 40, 117 (1926)ADSCrossRefGoogle Scholar
  12. 12.
    E. Schrödinger, Ann. Physics 79, 489 (1926)CrossRefGoogle Scholar
  13. 13.
    V. Fock, Z. Phys. 38, 242; 39, 226 (1926)Google Scholar
  14. 14.
    P.A.M. Dirac, Proc. Roy. Soc. A 117, 610 (1928)ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Swainson, G.W.F. Drake: J. Phys. A 24, 79, 95 (1991)Google Scholar

Suggestions for Textbooks and Further Reading

  1. 16.
    W. Greiner, J. Reinhardt: Field Quantization (Springer, New York 1996)CrossRefGoogle Scholar
  2. 17.
    W. Greiner: Relativistic Quantum Mechanics: Wave Equations (Springer, New York 2000)CrossRefGoogle Scholar
  3. 18.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Course of Theoretical Physics—Quantum Electrodynamics, vol. 4 ,2nd edn. (Butterworth–Heinemann, Oxford 1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.PinnebergGermany
  2. 2.Theoretical PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations