Advertisement

Application

  • Marcus Aßmus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

At this point, the computational solution strategy introduced in this work is to be applied. The investigations are limited to common data for geometries and materials used. Thereby we focus on data of photovoltaic modules as they are a prominent application of an Anti-Sandwich (Aßmus, Global structural analysis at photovoltaic modules: theory, numerics, application (in German). Dissertation, Otto von Guericke University Magdeburg, 2018, [1]). A distinction is made between parameter and case studies. In the parameter studies the effects of the variation of geometrical and physical quantities are investigated, while in the case studies examinations are carried out at realistic loading scenarios from natural weathering.

References

  1. 1.
    Aßmus M (2018) Global structural analysis at photovoltaic modules: theory, numerics, application (in German). Dissertation, Otto von Guericke University MagdeburgGoogle Scholar
  2. 2.
    Aßmus M, Köhl M (2012) Experimental investigation of the mechanical behavior of photovoltaic modules at defined inflow conditions. J Photonics Energy 2(1):1–11.  https://doi.org/10.1117/1.JPE.2.022002CrossRefGoogle Scholar
  3. 3.
    Aßmus M, Naumenko K, Altenbach H (2016) A multiscale projection approach for the coupled global-local structural analysis of photovoltaic modules. Compos Struct 158:340–358.  https://doi.org/10.1016/j.compstruct.2016.09.036CrossRefGoogle Scholar
  4. 4.
    Aßmus M, Bergmann S, Naumenko K, Altenbach H (2017) Mechanical behaviour of photovoltaic composite structures: a parameter study on the influence of geometric dimensions and material properties under static loading. Compos Commun 5(-):23–26.  https://doi.org/10.1016/j.coco.2017.06.003
  5. 5.
    Aßmus M, Naumenko K, Altenbach H (2017) Mechanical behaviour of photovoltaic composite structures: influence of geometric dimensions and material properties on the eigenfrequencies of mechanical vibrations. Compos Commun 6(-):59–62.  https://doi.org/10.1016/j.coco.2017.10.003
  6. 6.
    Brank B (2008) On boundary layer in the Mindlin plate model: Levy plates. Thin-Walled Struct 46(5):451–465.  https://doi.org/10.1016/j.tws.2007.11.003CrossRefGoogle Scholar
  7. 7.
    Brückner R (2006) Mechanical properties of glasses. In: Cahn RW, Haasen P, Kramer EJ, Zarzycki J (eds) Glasses and amorphous materials, materials science and technology: a comprehensive treatment, vol 9. Wiley-VCH, Weinheim, pp 665–713.  https://doi.org/10.1002/9783527603978.mst0102
  8. 8.
    Eisenträger J, Naumenko K, Altenbach H, Meenen J (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos Struct 133:265–277.  https://doi.org/10.1016/j.compstruct.2015.07.049CrossRefGoogle Scholar
  9. 9.
    Eitner U (2011) Thermomechanics of photovoltaic modules. Dissertation, Martin-Luther-Universitat Halle-Wittenberg. urn:nbn:de:gbv:3:4-5812Google Scholar
  10. 10.
    Huld T, Šúri M, Dunlop ED (2008) Comparison of potential solar electricity output from fixed-inclined and two-axis tracking photovoltaic modules in europe. Prog Photovolt Res Appl 16(1):47–59.  https://doi.org/10.1002/pip.773CrossRefGoogle Scholar
  11. 11.
    Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291.  https://doi.org/10.1016/j.compstruct.2014.02.009CrossRefGoogle Scholar
  12. 12.
    Sander M, Ebert M (2009) Vibration analysis of pv modules by laser-doppler vibrometry. In: 24th European photovoltaic solar energy conference (PVSEC), pp 3446–3450.  https://doi.org/10.4229/24thEUPVSEC2009-4AV.3.46

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke UniversityMagdeburg, Saxony-AnhaltGermany

Personalised recommendations