Advertisement

Introduction

  • Marcus Aßmus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Laminates, Sandwiches and Anti-Sandwiches are classically classified as composite structures. Composite structures are multi-layered thin-walled structural elements which exhibit special geometrical features. For this purpose, plane dimensions \(L_\alpha \;\forall \,\alpha \in \{1,2\}\) and the overall thickness H are used.

References

  1. 1.
    Altenbach H (1998) Theories for laminated and sandwich plates. Mech Compos Mater 34(3):243–252.  https://doi.org/10.1007/BF02256043CrossRefGoogle Scholar
  2. 2.
    Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke - Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen. Deutscher Verlag für Grundstoffindustrie, StuttgartGoogle Scholar
  3. 3.
    Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke: Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, Berlin.  https://doi.org/10.1007/978-3-642-58721-4CrossRefzbMATHGoogle Scholar
  4. 4.
    Altenbach H, Altenbach J, Kissing W (2004) Mechanics of composite structural elements. Springer, Berlin.  https://doi.org/10.1007/978-3-662-08589-9CrossRefGoogle Scholar
  5. 5.
    Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011.  https://doi.org/10.1002/zamm.201500069MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aron H (1874) Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale. Journal für die reine und angewandte Mathematik 78:136–174.  https://doi.org/10.1515/crll.1874.78.136MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aßmus M (2018) Global structural analysis at photovoltaic modules: theory, numerics, application (in German). Dissertation, Otto von Guericke University MagdeburgGoogle Scholar
  8. 8.
    Başar Y, Krätzig WB (1985) Mechanik der Flächentragwerke: Theorie Berechnungsmethoden, Anwendungsbeispiele. Springer, Wiesbaden.  https://doi.org/10.1007/978-3-322-93983-8CrossRefGoogle Scholar
  9. 9.
    Bertram A (2016) Compendium on gradient materials. Otto-von-Guericke Universität, Magdeburg. http://www.ifme.ovgu.de/ifme_media/FL/Publikationen/Compendium+on+Gradient+Materials+Okt+2016.pdf
  10. 10.
    Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140.  https://doi.org/10.1007/BF02736649MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296.  https://doi.org/10.1007/BF02736224MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cauchy AL (1828) Sur l’équilibre et le movement intérieur des corps considérés comme des masses continues. Ex de Math 4:293–319. http://catalogue.bnf.fr/ark:/12148/cb302073189
  13. 13.
    Ciarlet PG (1990) Plates and junctions in elastic multi-structures: an asymptotic analysis, vol 14. Research in applied mathematics. Masson, PariszbMATHGoogle Scholar
  14. 14.
    Cohen H, DeSilva CN (1966) Nonlinear theory of elastic directed surfaces. J Math Phys 7(6):960–966.  https://doi.org/10.1063/1.1705009CrossRefzbMATHGoogle Scholar
  15. 15.
    Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et fils, Paris. http://jhir.library.jhu.edu/handle/1774.2/34209
  16. 16.
    Duhem P (1893) Le potentiel thermodynamique et la pression hydrostatique. Annales scientifiques de l’École Normale Supérieure 10:183–230.  https://doi.org/10.24033/asens.389
  17. 17.
    Eisenträger J, Naumenko K, Altenbach H, Meenen J (2015) A user-defined finite element for laminated glass panels and photovoltaic modules based on a layer-wise theory. Compos Struct 133:265–277.  https://doi.org/10.1016/j.compstruct.2015.07.049
  18. 18.
    Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Arch Rat Mech Anal 1(1):295–323.  https://doi.org/10.1007/BF00298012MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Eringen AC (1999) Microcontinuum field theories: I. Foundations and solids. Springer, New York.  https://doi.org/10.1007/978-1-4612-0555-5CrossRefzbMATHGoogle Scholar
  20. 20.
    Föppl A (1907) Vorlesungen über technische Mechanik. B.G Teubner, LeipzigzbMATHGoogle Scholar
  21. 21.
    Girkmann K (1986) Flächentragwerke – Einführung in die Elastostatik der Scheiben, Platten, Schalen und Faltwerke, 6th edn. Springer, New York (First Edition 1946)zbMATHGoogle Scholar
  22. 22.
    Goldenweizer A (1962) Formulation of approximative theory of shells with the help of the asymptotic integration of the equations of the theory of elasticity (in Russian). Prikl Mat i Mekh 26(4):668–686Google Scholar
  23. 23.
    Green AE, Naghdi PM, Wainwright WL (1965) A general theory of a cosserat surface. Arch Rat Mech Anal 20(4):287–308.  https://doi.org/10.1007/BF00253138MathSciNetCrossRefGoogle Scholar
  24. 24.
    Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 10:195–213. https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00046248
  25. 25.
    Hencky H (1947) Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur-Archiv 16(1):72–76.  https://doi.org/10.1007/BF00534518CrossRefzbMATHGoogle Scholar
  26. 26.
    Kaplunov JD, Kossovich LY, Nolde E (1998) Dynamics of thin walled elastic bodies. Academic Press, CambridgezbMATHGoogle Scholar
  27. 27.
    Kienzler R, Schneider P (2012) Consistent theories of isotropic and anisotropic plates. J Theor Appl Mech 50(3):755–768Google Scholar
  28. 28.
    Kirchhoff GR (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik 40:51–88.  https://doi.org/10.1515/crll.1850.40.51MathSciNetCrossRefGoogle Scholar
  29. 29.
    Koiter W (1969) Foundations and basic equations of shell theory: a survey of recent progress. Theory of thin shells. IUTAM symposium copenhagen 1967. Springer, Heidelberg, pp 93–105. http://www.springer.com/gp/book/9783642884788
  30. 30.
    Kröner E (1968) Interrelations between various branches of continuum mechanics. Springer, Berlin, pp 330–340.  https://doi.org/10.1007/978-3-662-30257-6_40CrossRefzbMATHGoogle Scholar
  31. 31.
    Levinson M (1980) An accurate, simple theory of the statics and dynamics of elastic plates. Mech Res Commun 7(6):343–350.  https://doi.org/10.1016/0093-6413(80)90049-XCrossRefzbMATHGoogle Scholar
  32. 32.
    Libai A, Simmonds JG (1983) Nonlinear elastic shell theory. Adv Appl Mech 23:271–371.  https://doi.org/10.1016/S0065-2156(08)70245-XCrossRefzbMATHGoogle Scholar
  33. 33.
    Love AEH (1888) The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc Lond A: Math, Phys Eng Sci 179:491–546.  https://doi.org/10.1098/rsta.1888.0016CrossRefzbMATHGoogle Scholar
  34. 34.
    Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38zbMATHGoogle Scholar
  35. 35.
    Naghdi PM (1972) The theory of shells and plates. In: Flügge W (ed) Encyclopedia of physics - linear theories of elasticity and thermoelasticity, vol VI, a/2 (ed. C. Truesdell). Springer, Berlin, pp 425–640.  https://doi.org/10.1007/978-3-662-39776-3_5
  36. 36.
    Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112:283–291.  https://doi.org/10.1016/j.compstruct.2014.02.009CrossRefGoogle Scholar
  37. 37.
    Neff P, Hong KI, Jeong J (2010) The Reissner-Mindlin plate is the \(\Gamma \)-limit of Cosserat elasticity. Math Model Methods Appl Sci 20(9):1553–1590.  https://doi.org/10.1142/S0218202510004763Google Scholar
  38. 38.
    Noor AK, Burton WS (1989) Assessment of shear deformation theories for multilayered composite plates. Appl Mech Rev 42(1):1–13.  https://doi.org/10.1115/1.3152418CrossRefGoogle Scholar
  39. 39.
    Planterna F (1966) Sandwich construction: the bending and buckling of sandwich beams, plates, and shells. Wiley, New YorkGoogle Scholar
  40. 40.
    Preußer G (1982) Eine Erweiterung der Kirchhoffschen Plattentheorie. Dissertation, Technische Hochschule DarmstadtGoogle Scholar
  41. 41.
    Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  42. 42.
    Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. Taylor & Francis, Boca RatonGoogle Scholar
  43. 43.
    Reissner E (1944) On the theory of bending of elastic plates. J Math Phys 23(1–4):184–191.  https://doi.org/10.1002/sapm1944231184MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12:69–77Google Scholar
  45. 45.
    Saanouni K (2012) Damage mechanics in metal forming: advanced modeling and numerical simulation. ISTE Ltd and Wiley, London.  https://doi.org/10.1002/9781118562192
  46. 46.
    Sab K, Lebeé A (2015) Homogenization of heterogeneous thin and thick plates. Mechanical engineering and solid mechanics series. ISTE Ltd and Wiley, London.  https://doi.org/10.1002/9781119005247
  47. 47.
    Schäfer M (1962) Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Akademie, Berlin, pp 277–292Google Scholar
  48. 48.
    Timoshenko S, Woinowsky-Krieger S (1987) Theory of plates and shells, 2nd edn. McGraw-Hill, New York (First Edition 1959)zbMATHGoogle Scholar
  49. 49.
    Truesdell C (1964) Die Entwicklung des Drallsatzes. Zeitschrift für Angewandte Mathematik und Mechanik 44(4–5):149–158.  https://doi.org/10.1002/zamm.19640440402CrossRefzbMATHGoogle Scholar
  50. 50.
    Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Encyclopedia of physics - principles of classical mechanics and field theory, vol 2/3/1. Springer, Berlin, pp 226–858.  https://doi.org/10.1007/978-3-642-45943-6_2CrossRefGoogle Scholar
  51. 51.
    Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 34:3–52. http://eudml.org/doc/135896
  52. 52.
    von Kármán T (1910) Festigkeitsprobleme im Maschinenbau, vol IV. Encyklopädie der mathematischen Wissenschaften, pp 311–384Google Scholar
  53. 53.
    Zhilin PA (1976) Mechanics of deformable directed surfaces. Int J Solids Struct 12(9):635–648.  https://doi.org/10.1016/0020-7683(76)90010-XMathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhilin PA (2006) Applied mechanics - foundations of shells theory (in Russian). Publisher of the Polytechnic University, St. Petersburg. http://mp.ipme.ru/Zhilin/Zhilin_New/pdf/Zhilin_Shell_Book.pdf

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MechanicsOtto von Guericke UniversityMagdeburg, Saxony-AnhaltGermany

Personalised recommendations