Bounded Synchronization for a Class of Coupled Complex Networks with Nonidentical Nodes

  • Yuanyuan Wu
  • Jing Li
  • Qingbo Li
  • Qing-E Wu
  • Xiaoliang QianEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)


The bounded synchronization problem is investigated for a class of complex networks with nonidentical nodes in this paper. Firstly, the complex networks model with nonidentical nodes is proposed, and then the sufficient conditions are obtained to guarantee the bounded synchronization of the complex networks. Meanwhile, based on the proposed results of bounded synchronization, an adaptive pinning bounded synchronization criteria can be derived for the considered networks. Finally, a illustrative numerical example is given to show the effectiveness of the obtained results.


Complex networks Nonidentical nodes Bounded synchronization Adaptive pinning control 



This work is partially supported by the National Natural Science Foundation of China (61603350,61501407), Henan Province Outstanding Youth on Science and Technology Innovation (164100510017), and National 973 Program (613237).


  1. 1.
    Belykh, I., Belykh, V., Hasler, M.: Synchronization in asymmetrically coupled networks with node balance. Interdiscip. J. Nonlinear Sci. 16(1), 121–122 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barahona, M., Pecora, L.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054–101 (2002)CrossRefGoogle Scholar
  3. 3.
    Belykh, V., Belykh, I., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Phys. D Nonlinear Phenom. 195(12), 159–187 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I(54), 1317–1326 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lu, J., Ho, D.W.C., Liu, M.: Globally exponential synchronization in an array of asymmetric coupled neural networks. Phys. Lett. Appl. 369(5), 444–451 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, L., Cao, J.: Cluster synchronization in an array of coupled stochastic delayed neural networks via pinning control. Neurocomputing 74, 846–856 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3(1), 37–44 (2006)CrossRefGoogle Scholar
  8. 8.
    Nishikawa, T., Motter, A., Lai, Y., Hoppensteat, F.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize. Phys. Rev. Lett. 91(1), 014101–014104 (2003)CrossRefGoogle Scholar
  9. 9.
    Ramirez, J.G.B., Femat, R.: On the controlled synchronization of dynamical networks with nonidentical nodes. IEEE Sci. Phys. Control 1253–1257 (2007)Google Scholar
  10. 10.
    Shen, B., Wang, Z., Liu, X.: Bounded \(H_{\infty }\) synchronization and state estimation for discrte time-varying stochastic complex networks over a finite horizon. IEEE Trans. Neural Netw. 22(1), 145–157 (2011)CrossRefGoogle Scholar
  11. 11.
    Sorrentino, F., Bernardo, M., Garafalo, F., Chen, G.: Controllability of complex networks via pinning. Phys. Rev. E 75(4), 046103 (2007)CrossRefGoogle Scholar
  12. 12.
    Song, Q., Cao, J.: On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 57, 672–680 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Song, Q., Liu, F., Wen, G., Cao, J., Tang, Y.: Synchronization of coupled harmonic oscillators via sampled position data control. IEEE Trans. Circuits Syst. I: Regul. Pap. 63(7), 1079–1088 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wen, G., Duan, Z., Chen, G., Yu, W.: Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(2), 499–511 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wen, G., Yu, W., Hu, G., Cao, J., Yu, X.: Pinning synchronization of directed networks with switching topologies: a multiple lyapunov functions approach. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3239–3250 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, X., Chen, G.: Pinning control of scale-free dynamical networks. Phys. A: Stat. Mech. Appl. 310, 521–531 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, L., Chen, S., Wang, Q.: Eigenvalue based appoach to bounded synchronization of asymmetrically coupled networks. Commun. Nonlinear Sci. Numer. Simul. 22(13), 769–779 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yu, W., Chen, G., L\(\ddot{u}\), J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zheng, C., Cao, J.: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control. Neurocomputing 141, 153–159 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhou, J., Lu, J.A., L\(\ddot{u}\), J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44(4), 996–1003 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhong, W., Liu, G., Thomas, C.: Global bounded consensus of multiagent systems with nonidentical nodes and time delays. IEEE Trans. Syst. Man Cybern. Part B 42(5), 1480–1488 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhao, J., Hill, D.J., Liu, T.: Stability of dynamical networks with nonidentical nodes: a multiple V-Lyapunov function method. Automatica 47(47), 2615–2625 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuanyuan Wu
    • 1
  • Jing Li
    • 1
  • Qingbo Li
    • 2
  • Qing-E Wu
    • 1
  • Xiaoliang Qian
    • 1
    Email author
  1. 1.College of Electric and Information EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.College of Mathematics and Information ScienceZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations