Advertisement

Note on Interval Observer Design Based on Positive System Theory

  • Shenghui Guo
  • Wenyang Zhang
  • Jingyun Xu
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)

Abstract

This paper surveys interval observer design methods based on positive system theory, and two cases by using linear transformation are considered: (1) time-invariant linear transformation, the main tool is Sylvester equation; (2) time-varying linear transformation, and the Jordan canonical form plays a key role. The conclusion is that the performance of the two methods can be optimized by modifying some matrices in the design process. A numerical example is given to show the validity of our results.

Keywords

Positive system Interval observer Time-invariant transformation Time-varying transformation 

References

  1. 1.
    Davoodi, M., Meskin, N., Khorasani, K.: A single dynamic observer-based module for design of simultaneous fault detection, isolation and tracking control scheme. Int. J. Control 91(3), 508–523 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Efimov, D., Fridman, L., Raïssi, T.: Interval estimation for LPV systems applying high order sliding mode techniques. Automatica 48(9), 2365–2371 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Efimov, D., Perruquetti, W., Raïssi, T.: Interval observers for time-varying discrete-time systems. IEEE Trans. Autom. Control 58(12), 3218–3224 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron 62(6), 3757–3767 (2015)CrossRefGoogle Scholar
  6. 6.
    Gouzé, J.L., Rapaport, A., Hadj-Sadok, M.Z.: Interval observers for uncertain biological systems. Ecol. Model. 133(1–2), 45–56 (2000)CrossRefGoogle Scholar
  7. 7.
    Guo, S., Zhu, F.: Interval observer design for discrete-time switched system. IFAC-PapersOnLine 50(1), 5073–5078 (2017)CrossRefGoogle Scholar
  8. 8.
    Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters. Int. J. Control 77(4), 367–383 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mazenc, F., Bernard, O.: Interval observers for linear time-invariant systems with disturbances. Automatica 47(1), 140–147 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mazenc, F., Dinh, T.N., Niculescu, S.I.: Interval observers for discrete-time systems. Int. J. Robust Nonlinear Control 24(17), 2867–2890 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mustapha, A.R., Fernando, T., Uwe, H.: Positive observers for linear positive systems, and their implications. Int. J. Control 84(4), 716–725 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Raïssi, T., Efimov, D., Zolghadri, A.: Interval state estimation for a class of nonlinear systems. IEEE Trans. Autom. Control 57(1), 260–265 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shu, Z., Lam, J., Gao, H.: Positive observers and dynamic output-feedback controllers for interval positive linear systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(10), 3209–3222 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhu, F., Yang, J.: Fault detection and isolation design for uncertain nonlinear systems based on full-order, reduced-order and high-order high-gain sliding-mode observers. Int. J. Control 86(10), 1800–1812 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Electronics and Information Engineering, Suzhou University of Science and TechnologySuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Control Engineering of Henan ProvinceHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  3. 3.College of Engineering, Huzhou UniversityHuzhouPeople’s Republic of China

Personalised recommendations