Advertisement

Stabilization Design for Uncertain Linear Positive Systems with Time-Delay

  • Yujie Zhao
  • Linling Liao
  • Xiushan CaiEmail author
  • Yanhong Liu
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 480)

Abstract

Stabilization design for a class of uncertain linear positive systems with time-delay is devoted in this paper. By using the theory of positive system and the theorem of disk region, the interval observer is designed. And a control law is acquired based on the state of interval observer. Then, it is proved that the control law such that the closed-loop system is positive and asymptotically stable. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.

Keywords

Time-delay Uncertain positive system Interval observer Stabilization 

References

  1. 1.
    Busowicz, M.: Robust stability of positive discrete-time linear systems of fractional order. Bull. Pol. Acad. Sci, Tech. Sci. 58, 567–572 (2010)Google Scholar
  2. 2.
    Efimov, D., Rassi, T., Zolghadri, A.: Control of nonlinear and LPV systems: interval observer-based framework. IEEE Trans. Autom. Control 58, 773–778 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Garcia, G., Bernussou, J.: Pole assignment for uncertain systems in a specified disk by state feedback. IEEE Trans. Autom. Control 40, 184–190 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gouz, J., Rapaport, A., Hadj-Sadok, M.: Interval observers for uncertain biological systems. Ecol. Model. 133, 45–56 (2000)CrossRefGoogle Scholar
  5. 5.
    Haddad, W., Chellaboina, V.: Stability theory for nonnegative and compartmental dynamical systems with time delay. In: Proceedings of the 2004 American Control Conference, pp. 1422–1427 (2004)Google Scholar
  6. 6.
    Li, Y., Jian, C.: An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica 35(6), 1155–1159 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, Z.B., Zhu, S.Q.: Resilient static output feedback stabilization for controlled positive time-delay systems. J. Shandong Univ. (Eng. Sci.) 41, 46–51 (2011)Google Scholar
  8. 8.
    Li, T., Zhang, H.X., Sun, P.: New criterion of robust stability for interval time-varying delays linear uncertain systems. Control. Decis. 25(6), 953–957 (2010)MathSciNetGoogle Scholar
  9. 9.
    Liu X.W., Zhong S.M.: Stability analysis of positive systems with unbounded delays. In: Chinese Control and Decision Conference, pp. 193–198 (2010)Google Scholar
  10. 10.
    Liu, X.W., Yu, W.S., Wang, L.: Stability analysis of positive systems with bounded time-varying delays. IEEE Trans. Circuits Syst II: Expr Briefs 56, 600–604 (2009)CrossRefGoogle Scholar
  11. 11.
    Liu, X.W., Yu, W.S., Wang, L.: Stability analysis for continuous-time positive systems with time-varying delays. IEEE Trans. Autom. Control 55, 1024–1028 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Qu, Z.H.: Robust control of a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 37(9), 1437–1442 (1992)CrossRefGoogle Scholar
  13. 13.
    Rami, M., Helmke, U., Tadeo, F.: Positive observation problem for linear time-lag positive systems. IFAC Proc. Vol. 40, 536–541 (2007)CrossRefGoogle Scholar
  14. 14.
    Rami M., Helmke U., Tadeo F.: Positive observation problem for linear time-delay positive systems. In: 2007 Mediterranean Conference on Control Automation, pp. 1–6 (2007)Google Scholar
  15. 15.
    Shu, Z., Lam, J., Gao, H.: Positive observers and dynamic output-feedback controllers for interval positive linear systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 55, 3209–3222 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tanaka, K., Ikedea, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)CrossRefGoogle Scholar
  17. 17.
    Yang, B., Lin, W.: Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization. IEEE Trans. Autom. Control 50(5), 619–630 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zaidi I., Tadeo F., Chaabane M.: Positive observers for continuous time interval positive systems with time-delay. In: 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 225–230 (2013)Google Scholar
  19. 19.
    Zaidi, I., Chaabane, M., Tadeo, F.: Static state-feedback controller and observer design for interval positive systems with time delay. IEEE Trans. Circuits Syst. II: Expr Briefs 62, 506–510 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhu, X.D., Sun, Y.X.: Observer-based robust stabilization of uncertain dynamic time-delay systems. Control Theory Appl. 13(2), 254–258 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yujie Zhao
    • 1
  • Linling Liao
    • 1
  • Xiushan Cai
    • 1
    Email author
  • Yanhong Liu
    • 2
  1. 1.College of Mathematics, Physics, and Information EngineeringZhejiang Normal UniversityJinhuaChina
  2. 2.School of Electrical EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations