Characterization of Sensorized Porous 3D Gelatin/Chitosan Scaffolds Via Bio-impedance Spectroscopy

  • Muhammad Ahmed Khan
  • Nicola Francesco Lopomo
  • Mauro SerpelloniEmail author
  • Emilio Sardini
  • Luciana Sartore
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)


Conductive scaffolds are highly used in tissue engineering for bone defect, nerve regeneration, cardiac tissue constructs and many others. Currently, most methods for monitoring cell activities on scaffolds are destructive and invasive such as histological analysis. The research aimed at sensorizing and characterizing a porous gelatin/chitosan scaffold, hence this “Intelligent Scaffold” can behave as a biosensor for evaluating cell behaviour (cell adhesion, proliferation) along with directing cellular growth. Thus, in this research, three-dimensional (3D) gelatin based scaffold has been transformed into conductive scaffold and both the scaffolds are characterized and compared in terms of their electrical conductivity. Carbon black has been used as a doping material to fabricate a Carbon-Gelatin composite conductive scaffold. The scaffolds are prepared by Freeze drying method and carbon black has been homogeneously embedded throughout the gelatin matrix. The scaffold behaviour was characterized by Bio-impedance Spectroscopy method. The preliminary experimental results showed that the conductivity of carbon-gelatin/chitosan scaffold increases around 10 times as compared to simple gelatin scaffold. Thus, these results elucidated the importance of carbon black clustering for development of a conductive network. This shows that carbon black provides conducting path and hence in future, even a small change of cellular activity can be determined by impedance fluctuation within the scaffold.


Conductive scaffold Carbon-Gelatin scaffold Bio-impedance spectroscopy Electrical conductivity 


  1. 1.
    Yang, F., Murugan, R., Ramakrishna, S., et al.: Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891–1900 (2004)CrossRefGoogle Scholar
  2. 2.
    Subramanian, A., Krishnan, U.M., Sethuraman, S.: Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009)CrossRefGoogle Scholar
  3. 3.
    Khan, M.N., Islam, J.M.M., Khan, M.A.: Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A 2012(100A), 3020–3028 (2012)CrossRefGoogle Scholar
  4. 4.
    Fowler, B.O., Moreno, E.C., Brown, W.E.: Infra-red spectra of hydroxyl-apatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. Oral Biol. 11(477), 492 (1966)Google Scholar
  5. 5.
    Rey, C., Shimizu, M., Collins, B., Glimcher, M.J.: Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the upsilon 4 PO4 domain. Calcif. Tissue Int. 46, 384–394 (1990)CrossRefGoogle Scholar
  6. 6.
    Walters, M.A., Leung, Y.C., Blumenthal, N.C., LeGeros, R.Z., Konsker, K.A.: A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J. Inorg. Biochem. 39(19), 3–200 (1990)Google Scholar
  7. 7.
    Haydar, U., Islam, J.M.M.Z., Khan, M.A., Khan, R.A.: Physico-mechanical properties of wound dressing material and its biomedical applica-tion. J. Mech. Beh. Biomed. Mater. 4, 1369–1375 (2011)CrossRefGoogle Scholar
  8. 8.
    Mao, J.S., Liu, H.F., Yin, Y.J., Yao, K.D.: The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24, 1621–1629 (2003)CrossRefGoogle Scholar
  9. 9.
    Cheng, M., Deng, J., Yang, F., Gong, Y., Zhao, N., Zhang, X.: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 2871–2880 (2003)CrossRefGoogle Scholar
  10. 10.
    Hajiabbas, M., Mashayekhan, S., Nazaripouya, A., Naji, M., Hunkeler, D., RajabiZeleti, S., Sharifiaghdas, F.: Artif. Cells Nanomed. Biotechnol. (2013).
  11. 11.
    Jridi, M., Hajji, S., Ayed, H.B., Lassoued, I., Mbarek, A., Kammoun, M., Souissi, N., Nasri, M.: Int. J. Biol. Macromol. 67, 373 (2014)CrossRefGoogle Scholar
  12. 12.
    Sarem, M., Moztarzadeh, F., Mozafari, M., Prasad Shastri, V.: Mater. Sci. Eng. C 33, 4777 (2013)Google Scholar
  13. 13.
    Guan, S., Zhang, X.L., Lin, X.M., Liu, T.Q., Ma, X.H., Cui, Z.F.: J. Biomater. Sci. Polym. Ed. 24, 999 (2013)CrossRefGoogle Scholar
  14. 14.
    Martin-Lopez, E., Alonso, F.R., Nieto-Diaz, M., Nieto-Sampedro, M.: J. Biomater. Sci. Polym. Ed. 23, 207 (2012)CrossRefGoogle Scholar
  15. 15.
    Keong, L.C., Halim, A.S.: In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int. J. Mol. Sci. 10, 1300–1313 (2009)CrossRefGoogle Scholar
  16. 16.
    Hirano, S., Midorikawa, T.: Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials 19, 293–297 (1998)CrossRefGoogle Scholar
  17. 17.
    Li, Q., Dunn, E.T., Grandmaison, E.W., Goosen, M.F.A.: Applications and proper ties of chitosan. J. Bioact. Compat. Polym. 71, 370–397 (1992)CrossRefGoogle Scholar
  18. 18.
    Majeti, N.V.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)CrossRefGoogle Scholar
  19. 19.
    Suh, J.K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589–2598 (2000)CrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Rouabhia, M., Wang, Z., et al.: Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif. Organs 31, 13–22 (2007)CrossRefGoogle Scholar
  21. 21.
    Martins, A.M., Eng, G., Caridade, S.G., Mano, J.F., Reis, R.L., Vunjak-Novakovic, G.: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2), 635–643CrossRefGoogle Scholar
  22. 22.
    Shahini, A., Yazdimamaghani, M., Walker, K.J., Eastman, M.A., Hatami-Marbini, H., Smith, B.J., Ricci, J.L., Madihally, S.V., Vashaee, D., Tayebi, L.: 3D conductive nanocomposite scaffold for bone tissue engineering. Int. J. Nanomed. 9, 167–181 (2014)Google Scholar
  23. 23.
    Huang, J.C.: Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002)CrossRefGoogle Scholar
  24. 24.
    Zois, H., Apekis, L., Mamunya, Y.P.: Dielectric properties and morphology of polymer composites filled with dispersed iron. J. Appl. Polym. Sci. 88(13), 3013–3020 (2003)CrossRefGoogle Scholar
  25. 25.
    Tanasa, F., Zanoaga, M., Mamunya, Y.: Conductive thermoplastic polymer nanocomposites with ultralow percolation threshold. Sci. Res. Educ. Air Force-AFASES 2 (2015)Google Scholar
  26. 26.
    Doroski, D.M., Brink, K.S., Temenoff, J.S.: Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28, 187 (2007)CrossRefGoogle Scholar
  27. 27.
    Smith, L.E., Smallwood, R., Macneil, S.: A comparison of imaging methodologies for 3D tissue engineering. Microsc. Res. Tech. 73(12), 1123–1133 (2010). Scholar
  28. 28.
    Daza, P., Olmo, A., Cañete, D., Yúfera, A.: Monitoring living cell assays with bio-impedance sensors. Sens. Actuators B Chem. 176, 605–610 (2013)CrossRefGoogle Scholar
  29. 29.
    Lei, K.F., Wu, M.H., Liao, P.Y., Chen, Y.M., Pan, T.M.: Development of a micro-scale perfusion 3D cell culture biochip with an incorporated electrical impedance measurement scheme for the quantification of cell number in a 3D cell culture construct. Microfluid. Nanofluid. 12, 117–125 (2012)CrossRefGoogle Scholar
  30. 30.
    Lei, K.F., Wu, M.H., Hsu, C.W., Chen, Y.D.: Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 51, 16–21 (2014)CrossRefGoogle Scholar
  31. 31.
    Weijenborg, P.W., Rohof, W.O.A., Akkermans, L.M.A., Verheij, J., Smout, A.J.P.M., Bredenoord, A.J.: Electrical tissue impedance spectroscopy: a novel device to measure esophageal mucosal integrity changes during endoscopy. Neurogastroenterol. Motil. 25, 574–e458 (2013)CrossRefGoogle Scholar
  32. 32.
    Giaever, I., Keese, C.R.: Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. U.S.A. 88(17), 7896–7900 (1991)CrossRefGoogle Scholar
  33. 33.
    Lind, R., Connolly, P., Wilkinson, C.D.W., Breckenridge, L.J., Dow, J.A.T.: Single cell mobility and adhesion monitoring using extracellular electrodes. Biosens. Bioelectron. 6, 359–367 (1991)CrossRefGoogle Scholar
  34. 34.
    Wegener, J., Keese, C.R., Giaever, I.: Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259(1), 158–166 (2000)CrossRefGoogle Scholar
  35. 35.
    Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B.: Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 12(1), 29–41 (1997)CrossRefGoogle Scholar
  36. 36.
    Dey, K., Agnelli, S., Serzanti, M., Ginestra, P., Scarì, G., Dell’Era, P., Sartore, L.: Preparation and properties of high performance gelatin based hydrogels with chitosan or hydroxyethyl cellulose for tissue engineering applications. Int. J. Polym. Mater. Polym. Biomater. (2018).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ahmed Khan
    • 1
  • Nicola Francesco Lopomo
    • 1
  • Mauro Serpelloni
    • 1
    Email author
  • Emilio Sardini
    • 1
  • Luciana Sartore
    • 2
  1. 1.Department of Information EngineeringUniversity of BresciaBresciaItaly
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly

Personalised recommendations