RMSHI Solutions for Electromagnetic Transducers from Environmental Vibration

  • Sonia Bradai
  • Carlo TrigonaEmail author
  • Slim Naifar
  • Salvatore Baglio
  • Olfa Kanoun
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)


The demand for harvesting energy from ambient has increased due to the advancement in the field of smart autonomous systems where a self-power source is needed. Kinetic vibration presents one of the main interesting and available source in the environment. However, to store energy from such source, different design requirements should be achieved considering the environmental vibration properties (hundreds of Hz and at low vibration levels, less than few m/s2). It should be also noted that only hundreds of mV can be generated from vibration converters. In this work, an energy harvester system based on an electromagnetic converter and a passive energy management circuit based on the Random Mechanical Switching Harvester on Inductor (RMSHI) architecture are developed. Results show that also in presence of a generated voltage less than 100 mV, it is possible to store the energy inside a load capacitor. Further, the use of the proposed approach, based on mechanical and passive switch, enables to improve significantly the voltage outcome.


Electromagnetic energy harvesting Bistable-RMSHI Mechanical switches Wideband vibration Zero voltage threshold Random excitation 


  1. 1.
    Choi, M., Sui, Y., Lee, I.H., Meredith, R., Ma, Y., Kim, G., Li, T.: Autonomous microsystems for downhole applications: design challenges, current state, and initial test results. Sensors 17(10), 2190 (2017)CrossRefGoogle Scholar
  2. 2.
    Kazmierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer (2014)Google Scholar
  3. 3.
    Huesgen, T., Woias, P., Kockmann, N.: Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuators A 145–146, 423–429 (2008)CrossRefGoogle Scholar
  4. 4.
    Kim, D., Song, H., Khalil, H., Lee, J., Wang, S., Park, K.: 3-D vibration measurement using a single laser scanning vibrometer by moving to three different locations. IEEE Trans. Instrum. Meas. 63(8) (2014)CrossRefGoogle Scholar
  5. 5.
    Viehweger, C., Hartmann, B., Keutel, T., Kanoun, O.: Simulation of shading effects on the power output of solar modules for enhanced efficiency in photovoltaic energy generation. In: 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 610–613 (2014)Google Scholar
  6. 6.
    Zhu, D.: Sustainable Energy Harvesting Technologies—Past, Present and Future. INTECH, pp. 25 (2011)Google Scholar
  7. 7.
    Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., Nouet, P.: Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Procedia Eng. 25, 819–822 (2011)CrossRefGoogle Scholar
  8. 8.
    Andò, B., Baglio, S., Trigona, C.: Autonomous sensors: from standard to advanced solutions. IEEE Instrum. Meas. Mag. 13(3), 33–37 (2010)CrossRefGoogle Scholar
  9. 9.
    Maiorca, F., Giusa, F., Trigona, C., Andò, B., Bulsara, A.R., Baglio, S.: Diode-less mechanical H-bridge rectifier for “zero threshold” vibration energy harvesters. Sens. Actuators A 201, 246–253 (2013)CrossRefGoogle Scholar
  10. 10.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials. Smart Mater. Struct. 16, 1–21 (2007)CrossRefGoogle Scholar
  11. 11.
    Bradai, S., Naifar, S., Viehweger, C., Kanoun, O.: Electromagnetic vibration energy harvesting for railway applications. In: MATEC Web Conference, International Conference on Engineering Vibration (ICoEV 2017), vol. 148, pp. 12004 (2018)CrossRefGoogle Scholar
  12. 12.
    Bradai, S., Naifar, S., Viehweger, C., Kanoun, O.: Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Meas. J. 106, 251–263 (2017)CrossRefGoogle Scholar
  13. 13.
    Naifar, S., Bradai, S., Keutel, T., Kanoun, O.: Design of a vibration energy harvester by twin lateral magnetoelectric transducers. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1157–1162 (2014)Google Scholar
  14. 14.
    Naifar, S., Bradai, S., Viehweger, C., Kanoun, O., Litak, G.: Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation. Eur. Phys. J. Spec. Top. 224(14), 2897–2907 (2015)CrossRefGoogle Scholar
  15. 15.
    Bian, J., Wang, N., Ma, J., Jie, Y., Zou, J., Cao, X.: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing. Nano Energy 47, 442–450 (2018)CrossRefGoogle Scholar
  16. 16.
    Bradai, S., Naifar, S., Keutel, T., Kanoun, O.: Electrodynamic resonant energy harvester for low frequencies and amplitudes. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1152–1156 (2014)Google Scholar
  17. 17.
    Wu, L., Do, X.D., Lee, S.G., Ha, D.S.: A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 64(3), 537–549 (2017)CrossRefGoogle Scholar
  18. 18.
    Giusa, F., Giuffrida, A., Trigona, C., Andò, B., Bulsara, A.R., Baglio, S.: Random mechanical switching harvesting on inductor: a novel approach to collect and store energy from weak random vibrations with zero voltage threshold. Sens. Actuators A 198, 35–45 (2013)CrossRefGoogle Scholar
  19. 19.
    Tsai, T.H., Chen, K.: A 3.4 mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 72–73 (2013)Google Scholar
  20. 20.
    Porcarelli, D., Donati, I., Nehani, J., Brunelli, D., Magno, M., Benini, L.: Design and implementation of a multi sensors self sustainable wearable device. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 16–20 (2014)Google Scholar
  21. 21.
    Yuan, T., Duraisamy, B., Schwarz, T., Fritzsche, M.: Track fusion with incomplete information for automotive smart sensor systems. In: IEEE Radar Conference, RadarConf, pp. 1–4 (2016)Google Scholar
  22. 22.
    Cho, S., Spencer, B.F.: Sensor attitude correction of wireless sensor network for acceleration-based monitoring of civil structures. Comput.-Aided Civ. Infrastruct. Eng. 30(11), 859–871 (2015)CrossRefGoogle Scholar
  23. 23.
    Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)CrossRefGoogle Scholar
  24. 24.
    Andò, B., Baglio, S., L’Episcopo, G., Marletta, V., Savalli, N., Trigona, C.: A BE-SOI MEMS for inertial measurement in geophysical applications. Trans. Instrum. Meas. 60(5), 1901–1908 (2011)CrossRefGoogle Scholar
  25. 25.
    Fan, P.M.Y., Wong, O.Y., Chung, M.J., Su, T.Y., Zhang, X., Chen, P.H.: Energy harvesting techniques: energy sources, power management and conversion. In: 2015 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (2015)Google Scholar
  26. 26.
    Zhu, D., Beeby, S.: Energy Harvesting Systems: Principles, Modeling and Applications, pp. 1–78. Springer (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sonia Bradai
    • 1
    • 2
  • Carlo Trigona
    • 1
    • 3
    Email author
  • Slim Naifar
    • 1
    • 2
  • Salvatore Baglio
    • 3
  • Olfa Kanoun
    • 1
  1. 1.Technische Universität ChemnitzChemnitzGermany
  2. 2.Laboratory of Electromechanical Systems, National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  3. 3.D.I.E.E.I., Dipartimento di Ingegneria Elettrica Elettronica e InformaticaUniversity of CataniaCataniaItaly

Personalised recommendations