Smart Transducers for Energy Scavenging and Sensing in Vibrating Environments

  • Slim Naifar
  • Carlo TrigonaEmail author
  • Sonia Bradai
  • Salvatore Baglio
  • Olfa Kanoun
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)


The possibility to scavenge energy from vibration and to measure, at the same time, additional information, such as physical characteristics of the incoming source of energy, is of great interest in the modern research. This includes autonomous sensing elements, smart transducers and innovative methods of measurements also in the context of “industry 4.0”. The pursued approach concerns an electromagnetic transducer able to harvest energy coming from the environment (kinetic source of energy), as consequence, charges will be accumulated inside a storage capacitor. It is also capable to measure the mechanical power and transmits the information by using an optical method. It is worth noting that the proposed architecture works without conditioning circuits or active elements. The smart transducer for energy scavenging is designed and experiments are performed showing the suitability of the proposed device.


Smart transducer Energy harvesting Mechanical power sensor Electromagnetic mechanism Vibrating environments Industry 4.0 


  1. 1.
    Toh, W.Y., Tan, Y.K., Koh, W.S., Siek, L.: Autonomous wearable sensor nodes with flexible energy harvesting. IEEE Sens. J. 14(7), 2299–2306 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Wang, Z.L.: Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11(7), 7440–7446 (2017)CrossRefGoogle Scholar
  3. 3.
    Andò, B., Baglio, S., La Malfa, S., Pistorio, A., Trigona, C.: A smart wireless sensor network for AAL. In: 2011 IEEE International Workshop on Measurements and Networking Proceedings (M&N), pp. 122–125 (2011)Google Scholar
  4. 4.
    Kazmierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer (2014)Google Scholar
  5. 5.
    Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., Nouet, P.: Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Procedia Eng. 25, 819–822 (2011)CrossRefGoogle Scholar
  6. 6.
    Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C., Guan, Y.L.: Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhou, F., Joshi, S.N., Dede, E.M.: Thermal energy harvesting with next generation cooling for automotive electronics. In: Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials Thermal Energy Harvesting with, vol. 16 (2017)Google Scholar
  8. 8.
    Chen, Z., Law, M.K., Mak, P.I., Martins, R.P.: A single-chip solar energy harvesting IC using integrated photodiodes for biomedical implant applications. IEEE Trans. Biomed. Circuits Syst. 11(1), 44–53 (2017)CrossRefGoogle Scholar
  9. 9.
    Tuna, G., Gungor, V.C., Gulez, K.: Energy harvesting techniques for industrial wireless sensor networks. In: Hancke, G.P., Gungor, V.C. (eds.) Industrial Wireless Sensor Networks: Applications, Protocols, Standards, and Products, pp. 119–136 (2017)Google Scholar
  10. 10.
    Andò, B., Baglio, S., L’Episcopo, G., Marletta, V., Savalli, N., Trigona, C.: A BE-SOI MEMS for inertial measurement in geophysical applications. IEEE Trans. Instrum. Meas. 60(5), 1901–1908 (2011)CrossRefGoogle Scholar
  11. 11.
    Naifar, S., Bradai, S., Viehweger, C., Kanoun, O.: Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation 106, 251–263 (2017)Google Scholar
  12. 12.
    Roundy, S., Rabaey, J.M., Wright, P.K.: Energy Scavenging for Wireless Sensor Networks. Springer, New York, LLC (2004)CrossRefGoogle Scholar
  13. 13.
    Bloem, J., Van Doorn, M., Duivestein, S., Excoffier, D., Maas, R., Van Ommeren, E.: The Fourth Industrial Revolution. Things to Tighten the Link Between IT and OT (2014)Google Scholar
  14. 14.
    Spies, P., Pollak, M., Mateu, L.: Handbook of Energy Harvesting Power Supplies and Applications. CRC Press (2015)Google Scholar
  15. 15.
    Shepard Jr., J.F., Chu, F., Kanno, I., Trolier-McKinstry, S.: Characterization and aging response of the d 31 piezoelectric coefficient of lead zirconate titanate thin films. J. Appl. Phys. 85(9), 6711–6716 (1999)CrossRefGoogle Scholar
  16. 16.
    Naifar, S., Bradai, S., Keutel, T., Kanoun, O.: Design of a vibration energy harvester by twin lateral magnetoelectric transducers. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1157–1162 (2014)Google Scholar
  17. 17.
    Bradai, S., Naifar, S., Keutel, T., Kanoun, O.: Electrodynamic resonant energy harvester for low frequencies and amplitudes. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1152–1156 (2014)Google Scholar
  18. 18.
    Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley (2014)Google Scholar
  19. 19.
    Beninato, A., Trigona, C., Ando, B., Baglio, S.: A PZT-based energy sensor able to store energy and transmit data. In: IEEE Sensors Applications Symposium (SAS), pp. 1–5 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Slim Naifar
    • 1
    • 3
  • Carlo Trigona
    • 1
    • 2
    Email author
  • Sonia Bradai
    • 1
    • 3
  • Salvatore Baglio
    • 2
  • Olfa Kanoun
    • 1
  1. 1.Technische Universität ChemnitzChemnitzGermany
  2. 2.D.I.E.E.I, Dipartimento di Ingegneria Elettrica Elettronica e InformaticaUniversity of CataniaCataniaItaly
  3. 3.Laboratory of Electromechanical Systems, National Engineering School of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations