Advertisement

Micro Doppler Radar and Depth Sensor Fusion for Human Activity Monitoring in AAL

  • Susanna SpinsanteEmail author
  • Matteo Pepa
  • Stefano Pirani
  • Ennio Gambi
  • Francesco Fioranelli
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

Among the older adults population, falls represent a serious health problem, and a considerable economic issue for the society as a whole, due to their many consequences. In order to design reliable systems for automatic fall detection, able to distinguish falls from activities of daily living, the sensor fusion approach may be exploited. In this paper, the quite innovative fusion of Micro Doppler Radar and Kinect sensors to achieve acceptable accuracy and sensitivity in fall detection is investigated. The results show that by fusion, it is possible to provide a 100% fall detection sensitivity, over a dataset collected by taking into account ten different actions, with proper configuration of the acquisition setup and algorithmic parameters.

Keywords

Fall detection Sensor fusion Depth Micro doppler radar 

Notes

Acknowledgements

M. Pepa was partially supported by COST Action IC1303 under the Short Term Scientific Mission ECOST-STSM-IC1303-200317-084684.

References

  1. 1.
    World Health Organization: falls—fact sheet (2016). http://www.who.int/mediacentre/factsheets/fs344/en/ (last accessed: April 29th, 2018)
  2. 2.
    Koenig, A., et al.: Validation of an automatic video monitoring system for the detection of instrumental activities of daily living in dementia patients. J. Alzheimer’s Dis. 44(2), 675–685 (2015)CrossRefGoogle Scholar
  3. 3.
    Daponte, P., De Marco, J., De Vito, L., Pavic, B., Zolli, S.: Electronic measurements in rehabilitation. In: 2011 IEEE International Symposium on Medical Measurements and Applications, pp. 274–279, May 2011Google Scholar
  4. 4.
    Garcia, N.M., Garcia, N.C., Sousa, P., Oliveira, D., Alexandre, C., Felizardo, V.: TICE.Healthy: A perspective on medical information integration. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2014, art. no. 6864403, pp. 464–467 (2014)Google Scholar
  5. 5.
    Martín Martín, R., Lorbach, M., Brock, O.: Deterioration of depth measurements due to interference of multiple RGB-D sensors. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, pp. 4205–4212 (2014)Google Scholar
  6. 6.
    Cippitelli, E., Fioranelli, F., Gambi, E., Spinsante, S.: Radar and rgb-depth sensors for fall detection: a review. IEEE Sens. J. 17, no. 12, 3585–3604 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, H., Shrestha, A., Fioranelli, F., Le Kernec, J., Heidari, H., Pepa, M., Cippitelli, E., Gambi, E., Spinsante, S.: Multisensor data fusion for human activities classification and fall detection. In: 2017 IEEE Sensors Proceedings, Glasgow, UK, pp. 1–3 (2017)Google Scholar
  8. 8.
    Luo, R.C., Yih, C.C., Lan Su, K.: Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sens J 2(2), 107–119 (2002)CrossRefGoogle Scholar
  9. 9.
    Smith, G.E., Woodbridge, K., Baker, C.J.: Radar micro-doppler signature classification using dynamic time warping. IEEE Trans. Aero. Electron. Sys. 46(3), 1078–1096 (2010)CrossRefGoogle Scholar
  10. 10.
    Yang, L., Zhang, L., Dong, H., Alelaiwi, A., Saddik, A.E.: Evaluating and improving the depth accuracy of kinect for windows v2. IEEE Sens. J. 15(8), 4275–4285 (2015)CrossRefGoogle Scholar
  11. 11.
    Cippitelli, E., Gambi, E., Spinsante, S., Florez-Revuelta, F.: Evaluation of a skeleton-based method for human activity recognition on a large-scale RGB-D dataset. In: 2nd IET International Conference on Technologies for Active and Assisted Living (TechAAL 2016), London, UK, pp. 1–6 (2016)Google Scholar
  12. 12.
    Cippitelli, E., Gambi, E., Spinsante, S., Florez-Revuelta, F.: Human action recognition based on temporal pyramid of key poses using RGB-D sensors. In: Blanc-Talon J., Distante C., Philips W., Popescu D., Scheunders P. (eds.) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science, vol. 10016. Springer, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Cippitelli, E., Gasparrini, S., Gambi, E., Spinsante, S.: A human activity recognition system using skeleton data from RGBD sensors. Comput. Intell. Neurosci. 2016, Article ID 4351435, 14 pages (2016).  https://doi.org/10.1155/2016/4351435CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Susanna Spinsante
    • 1
    Email author
  • Matteo Pepa
    • 1
  • Stefano Pirani
    • 1
  • Ennio Gambi
    • 1
  • Francesco Fioranelli
    • 2
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversita’ Politecnica delle MarcheAnconaItaly
  2. 2.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations