Advertisement

Machine Learning Techniques to Select a Reduced and Optimal Set of Sensors for the Design of Ad Hoc Sensory Systems

  • Luigi QuerciaEmail author
  • Domenico Palumbo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

The first step of this research has been to discriminate, by means of a commercial electronic nose (e-nose), the maturity evolution of seven types of fruits stored in refrigerated cells, from the post-harvest period till the beginning of the marcescence. The final aim was to determine a procedure to select a reduced set of sensors that can be efficiently used to monitor the same class of fruits by a low cost system with few, suitable sensors without loss in accuracy and generalization. To define the best subset we have compared the use of a projection technique (the Principal Component Analysis, PCA) with the sequential feature selection technique (Sequential Forward Selection, SFS) and the Genetic Algorithm (GA) technique by using classification schemes like Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (kNN) and applying two data pre-processing methods. We have determined a subset of only three sensors which gives a classification accuracy near 100%. This procedure can be generalized to other experimental situations to select a minimal and optimal set of sensors to be used in consumer applications for the design of ad hoc sensory systems.

Keywords

Sensors selection Classification algorithms Electronic nose Fruit monitoring PCA 

Notes

Acknowledgements

This work has been partially funded by Italian Ministry of Economic Development thanks to “Ricerca di Sistema elettrico”, “ORTOFRULOG”, and “Magazzino Viag-giante” projects. The authors are thankful to Paolo di Lorenzo for his support in the experimental campaigns.

References

  1. 1.
    Wilson, A.D., Baietto, M.: Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009)CrossRefGoogle Scholar
  2. 2.
    Tang, K.T., Chiu, S.W., Pan, C.H., Hsieh, H.Y., Liang, Y.S., Liu, S.C.: Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10, 9179–9193 (2010).  https://doi.org/10.3390/s101009179CrossRefGoogle Scholar
  3. 3.
    Dutta, R., Hines, E.L., Gardner, J.W., Kashwan, K.R., Bhuyan, M.: Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuators B Chem. 94, 228–237 (2003).  https://doi.org/10.1016/s0925-4005(03)00367-8CrossRefGoogle Scholar
  4. 4.
    de Vries, R., Brinkman, P., van der Schee, M.P., Fens, N., Dijkers, E., Bootsma, S.K., de Jongh, F.H.C., Sterk, P.J.: Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J. Breath Res. 9, 046001 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, J., Gao, D., Wang, Z.: Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array. Meas. Sci. Technol. 26, 085005 (9 pp) (2015)CrossRefGoogle Scholar
  6. 6.
    Wongchoosuk, C., Lutz, M., Kerdcharoen, T.: Detection and classification of human body odor using an electronic nose. Sensors 9, 7234–7249 (2009).  https://doi.org/10.3390/s90907234CrossRefGoogle Scholar
  7. 7.
    Yin, X., Zhang, L., Tian, F., Zhang, D.: Temperature modulated gas sensing E-nose system for low-cost and fast detection. IEEE Sens. J. 16(2) (2016)CrossRefGoogle Scholar
  8. 8.
    Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., Martin, F.L.: Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).  https://doi.org/10.1038/nprot.2016.036CrossRefGoogle Scholar
  9. 9.
    Ollesch, J., Drees, S.L., Heise, H.M., Behrens, T., Bruning, T., Gerwert, K.: FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst 138, 4092 (2013)CrossRefGoogle Scholar
  10. 10.
    Benedetti, S., Buratti, S., Spinardi, A., Mannino, S., Mignani, I.: Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biol. Technol. 47, 181–188 (2008).  https://doi.org/10.1016/j.postharvbio.2007.06.012CrossRefGoogle Scholar
  11. 11.
    Hernández Gómez, A., Wang, J., Hu, G., García Pereira, A.: Electronic nose technique potential monitoring mandarin maturity. Sens. Actuators B Chem. 113, 347–353 (2006).  https://doi.org/10.1016/j.snb.2005.03.090CrossRefGoogle Scholar
  12. 12.
    Hernández Gómez, A., Wang, J., Hu, G., García Pereira, A.: Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT-Food. Sci. Technol. 40, 681–689 (2007).  https://doi.org/10.1016/j.lwt.2006.03.010CrossRefGoogle Scholar
  13. 13.
    Baldwin, E.A., Bai, J., Plotto, A., Dea, S.: Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11, 4744–4766 (2011).  https://doi.org/10.3390/s110504744CrossRefGoogle Scholar
  14. 14.
    Rizzolo, A., Bianchi, G., Vanoli, M., Lurie, S., Spinelli, L., Torricelli, A.: Electronic nose to detect volatile compound profile and quality changes in ‘Spring Belle’ peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy. J. Agric. Food Chem. 61, 1671–1685 (2013).  https://doi.org/10.1021/jf302808gCrossRefGoogle Scholar
  15. 15.
    Scott, S.M., James, D., Ali, Z.: Data analysis for electronic nose systems. Microchim. Acta 156, 183–2007 (2007).  https://doi.org/10.1007/s00640-006-0623-9CrossRefGoogle Scholar
  16. 16.
    Gorunescu, F.: Data Mining, Concepts, Models and Techniques. Intelligent Systems Reference Library, vol. 12. Springer, Berlin, Heidelberg (2011). ISBN: 978-3-642-19720-8 (Print) 978-3-642-19721-5 (Online);  https://doi.org/10.1007/978-3-642-19721-5CrossRefGoogle Scholar
  17. 17.
    Gutierrez-Osuna, R.: Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2(3), 189–202 (2002)CrossRefGoogle Scholar
  18. 18.
    Boilot, P., Hines, E.L., Gongora, M.A., Folland, R.S.: Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens. Actuators B Chem. 88, 80–88 (2003)CrossRefGoogle Scholar
  19. 19.
    Dutta, R., Hines, E.L., Gardner, J.W., Udrea, D.D., Boilot, P.: Non-destructive egg freshness determination: an electronic nose based approach. Meas. Sci. Technol. 14, 190–198 (2003)CrossRefGoogle Scholar
  20. 20.
    Lavine, B.K.: Chemometrics: clustering and classification of analytical data. In: Encyclopedia of Analytical Chemistry, pp. 1–21. Wiley, Chichester (2000)Google Scholar
  21. 21.
    Gardner, J.W., Boilot, P., Hines, E.L.: Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens. Actuators B Chem. 106, 114–121 (2005).  https://doi.org/10.1016/j.snb.2004.05.043CrossRefGoogle Scholar
  22. 22.
    Ehret, B., Safenreiter, K., Lorenz, F., Biermann, J.: A new feature extraction method for odour classification. Sens. Actuators B Chem. 158, 75–88 (2011).  https://doi.org/10.1016/j.snb.2011.05.042CrossRefGoogle Scholar
  23. 23.
    The MathWorks, Inc., Natick, MA, USAGoogle Scholar
  24. 24.
    Leopold, J.H., Bos, L.D., Sterk, P.J., Schultz, M.J., Fens, N., Horvath, I., Bikov, A., Montuschi, P., Di Natale, C., Yates, D.H., Abu-Hanna, A.: Comparison of classification methods in breath analysis by electronic nose. J. Breath Res. 9, 046002 (2015)CrossRefGoogle Scholar
  25. 25.
    Pardo, M., Kwong, L.G., Sberveglieri, G., Brubaker, K., Schneider, J.F., Penrose, W.R., Stetter, J.R.: Data analysis for a hybrid sensor array. Sens. Actuators B Chem. 106, 136–143 (2005).  https://doi.org/10.1016/j.snb.2004.05.045CrossRefGoogle Scholar
  26. 26.
    Guo, D., Zhang, D., Zhang, L.: An LDA based sensor selection approach used in breath analysis system. Sens. Actuators B Chem. 157, 265–274 (2011).  https://doi.org/10.1016/j.snb.2011.03.061MathSciNetCrossRefGoogle Scholar
  27. 27.
    Oluleye, B., Leisa, A., Leng, J., Dean, D.: A genetic algorithm-based feature selection. Br. J. Math. Comput. Sci. 4(21), 3090–3106 (2014)CrossRefGoogle Scholar
  28. 28.
    Questier, F., Walczak, B., Massart, D.L., Bouconb, C., de Jong, S.: Feature selection for hierarchical clustering. Anal. Chim. Acta 466, 311–324 (2002)CrossRefGoogle Scholar
  29. 29.
    Pardo, A., Marco, S., Calaza, C., Ortega, A., Perera, A., Sundic, T., Samitier, J.: Methods for sensor selection in pattern recognition. In: Gardner, J.W., Persaud, K.C. (eds.) Electronic Noses and Olfaction, pp. 83–88. IoP Publishing, Bristol (2000)Google Scholar
  30. 30.
    Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic algorithm toolbox for use with MATLAB, Free Computer Programs on the Website of the Department of Automatic Control and Systems Engineering, University of Sheffield (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ENEA, Casaccia Research CentreRomeItaly

Personalised recommendations