Advertisement

IEEE 21451-001 Signal Treatment Applied to Smart Transducers

  • F. Abate
  • M. Carratù
  • A. Espírito-Santo
  • V. Huang
  • G. Monte
  • V. PacielloEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

Control and monitoring systems base their decisions on the information provided by transducers. These signals must be acquired, processed and transmitted. There is an exchange between sensor signal processing and data rate, more signal processing inside the transducer implies lower data rate over the networks. This paper presents the standard IEEE 21451-001 whose main purpose is to extract knowledge of transducer signals that can be shared with others to increase system reliability, infer shapes, normal/abnormal states and to provide a normalized building structure for extracting knowledge. This standard extracts information directly from sampling based on a more complete structure. The standard is described highlighting the purpose and the main algorithms.

Keywords

IEEE 1451 Smart transducers Oversampling Sensor networks 

References

  1. 1.
    Di Lecce, V.: Towards intelligent sensor evolution: a holonic based system architecture. In: SENSORCOMM 2012: The Sixth International Conference on Sensor Technologies and Applications (2012)Google Scholar
  2. 2.
    Carratù, M., Pietrosanto, A., Sommella, P., Paciello, V.: Suspension velocity prediction from acceleration measurement for two wheels vehicle. In: I2MTC 2017 (2017).  https://doi.org/10.1109/i2mtc.2017.7969943
  3. 3.
    Angrisani, L., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G.: On employing a Savitzky-Golay filtering stage to improve performance of spectrum sensing in CR applications concerning VDSA approach. Metrol. Meas. Syst. 23(2), 295–308.  https://doi.org/10.1515/mms-2016-0019CrossRefGoogle Scholar
  4. 4.
    Capriglione, D., Carratù, M., Liguori, C., Paciello, V., Sommella, P.: A Soft stroke sensor for motorcycle rear suspension (2017).  https://doi.org/10.1016/j.measurement.2017.04.011CrossRefGoogle Scholar
  5. 5.
    Betta, G., Capriglione, D., Cerro, G., Ferrigno, L., Miele, G.: The effectiveness of Savitzky-Golay smoothing method for spectrum sensing in cognitive radios. In: 2015 XVIII AISEM Annual Conference, Trento, 2015, pp. 1–4.  https://doi.org/10.1109/aisem.2015.7066819
  6. 6.
    Sivakumar, K.: Internet of Things (IoT). Cisco Systems. http://www.ethernetsummit.com/English/Collaterals/Proceedings/2014/20140430_1D_Sivakumar.pdf (2014)
  7. 7.
    Edge Computing-Ryan LaMothe Research Scientist Pacific Northwest National Laboratory, Jan 2013Google Scholar
  8. 8.
    Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56(6), 2334–2345 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Monte, G.: Sensor signal preprocessing techniques for analysis and prediction. In: 34th Annual Conference of IEEE. Industrial Electronics, 2008. IECON 2008, pp 1788–1793. ISBN 978-114244-1766-7Google Scholar
  10. 10.
    Monte, G., Liu, Z., Abate, F., Paciello, V., Pietrosanto, A., Huang, V.: Normalizing transducer signals: An overview of a proposed standard. In: Proceedings IEEE International Instrumentation Measurement Technology Conference (I2MTC), Montevideo, Uruguay, May 2014, pp. 614–619Google Scholar
  11. 11.
    Monte, G., Abate, F., Huang, V, Paciello, V., Pietrosanto, A.: Real time transducer signal features extraction: a standard approach. In: 2015 IEEE 13th International Conference Industrial Informatics (INDIN). http://dx.doi.org/10.1109/INDIN.2015.7281740
  12. 12.
    Monte, G., et al.: A novel time-domain signal processing algorithm for real time ventricular fibrillation detection. J. Phys.: Conf. Ser. 332, 012015 (2011).  https://doi.org/10.1088/1742-6596/332/1/012015Google Scholar
  13. 13.
    Abate, F., Paciello, V., Pietrosanto, A., Guia, S.S., Santo, A.E.: Period measurement with an ARM microcontroller. In: Proceedings of the 2015 18th AISEM Annual Conference, AISEM 2015, pp. 1–4. ISBN 9781479985913.  https://doi.org/10.1109/aisem.2015.7066785
  14. 14.
    Abate, F., Paciello, V., Pietrosanto, A., Monte, G.: Preliminary analysis of a real time segmentation and labeling algorithm. In: 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, EESMS 2015—Proceedings, pp. 215–219 (2015) ISBN 9781479982141.  https://doi.org/10.1109/eesms.2015.7175880

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoSalernoItaly
  2. 2.Department of Electromechanical EngineeringUniversity of Beira InteriorCovilhãPortugal
  3. 3.Georgia Institute of TechnologyAtlantaUSA
  4. 4.Facultad Regional del NeuquénUniversidad Tecnológica NacionalBuenos AiresArgentina
  5. 5.DIEI University of Cassino and Southern LazioCassinoItaly

Personalised recommendations