Advertisement

Design of a Label-Free Multiplexed Biosensing Platform Based on an Ultracompact Plasmonic Resonant Cavity

  • Francesco Dell’Olio
  • Donato Conteduca
  • Maripina De Palo
  • Nicola Sasanelli
  • Caterina CiminelliEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 539)

Abstract

A multi-analyte biosensing platform for the selective label-free detection of protein biomarkers has been designed through a three-dimensional model based on the finite element method. The sensing element of the platform is a planar plasmonic nanocavity, consisting of a one-dimensional periodic structure (Bragg grating) in gold, with a defect, placed on the buried oxide of a silicon-on-insulator substrate. The footprint of this sensing element, which has a good chemical stability, is only 1.57 μm2. The sensor has a detection limit of 128 pg/mm2 and a surface sensitivity of 1.8 nm/nm.

Keywords

Biosensor Plasmonics Bragg grating 

References

  1. 1.
    Lafleur, J.P., Jönsson, A., Senkbeil, S., Kutter, J.P.: Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 76, 213–233 (2016)CrossRefGoogle Scholar
  2. 2.
    Jain, K.: The Handbook of Biomarkers. Springer, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Dincer, C., Bruch, R., Kling, A., Dittrich, P.S., Urban, G.A.: Multiplexed point-of-care testing—xPOCT. Trends Biotechnol. 35, 728–742 (2017)CrossRefGoogle Scholar
  4. 4.
    Estevez, M., Alvarez, M., Lechuga, L.: Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev. 6, 463–487 (2011)CrossRefGoogle Scholar
  5. 5.
    Ciminelli, C., Campanella, C., Dell’Olio, F., Campanella, C., Armenise, M.: Label-free optical resonant sensors for biochemical applications. Prog. Quantum Electron. 37, 51–107 (2013)CrossRefGoogle Scholar
  6. 6.
    Dell’Olio, F., Conteduca, D., Ciminelli, C., Armenise, M.: New ultrasensitive resonant photonic platform for label-free biosensing. Opt. Express 23, 28593 (2015)CrossRefGoogle Scholar
  7. 7.
    Brolo, A.: Plasmonics for future biosensors. Nat. Photonics 6, 709–713 (2012)CrossRefGoogle Scholar
  8. 8.
    Gao, Y., Xin, Z., Zeng, B., Gan, Q., Cheng, X., Bartoli, F.: Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. Lab on a Chip 13, 4755 (2013)CrossRefGoogle Scholar
  9. 9.
    Binfeng, Y., Guohua, H., Ruohu, Z., Yiping, C.: Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt. Express 22, 28662 (2014)CrossRefGoogle Scholar
  10. 10.
    Gazzaz, K., Berini, P.: Theoretical biosensing performance of surface plasmon polariton Bragg gratings. Appl. Opt. 54, 1673 (2015)CrossRefGoogle Scholar
  11. 11.
    Dell’Olio, F., Conteduca, D., De Palo, M., Ciminelli, C.: Design of a new ultracompact resonant plasmonic multi-analyte label-free biosensing platform. Sensors 17, 1810 (2017)CrossRefGoogle Scholar
  12. 12.
    Dell’Olio, F., De Palo, M., Conteduca, D., Ciminelli, C.: Resonant nanoplasmonic platform for fast and early diagnosis of cardiovascular diseases. In: Proceedings of the IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 1–4. IEEE, New York (2016)Google Scholar
  13. 13.
    Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998)CrossRefGoogle Scholar
  14. 14.
    Maier, S.A.: Plasmonics: fundamentals and applications. Springer, New York (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Dell’Olio
    • 1
  • Donato Conteduca
    • 1
  • Maripina De Palo
    • 1
  • Nicola Sasanelli
    • 1
  • Caterina Ciminelli
    • 1
    Email author
  1. 1.Optoelectronic LaboratoryPolitecnico di BariBariItaly

Personalised recommendations